RMLOGO
RN\

p— L - R L et - S



Discrepancies in the RM Logo Reference Manual
Reference Section

arcl, arcr
The angle of arc is limited to + 360 degrees, not mod 360 as with
the other "radial" commands.
bload
If you bload the same extension more than once, identical sets of
routines will be loaded, as shown by the bloaded command.
build
It is possible to use build to edit an existing procedure, but not
possible to use edit to build a non-existant procedure.
colour, setc, bg, setbg
When real numbers are supplied to setc or setbq, only the
integer part (mod 16) is used.
fence
The fence is one-way: if a turtle is outside the screen area before
fence is issued, it is possible for the turtle to enter the screen
again. The fence then becomes active.

.
(o]
-
=

The maximum length of any single Logo word is 63 characters. If
you use join, or any similar command, to create a word of more
than 63 characters, a word of exactly 63 characters will be
produced.

pennormal, penreverse
These primitives do NOT lower the pen as stated in the manual.

power numberl number2
If numberl <= 0 and number2 is not an integer, an error is
generated.

readfiled
When using this primitive, if any special Logo character is found
in the line that is being read, the line is truncated from the point
of the character. The next readfiled command starts with the
next line in the file.

sense
If a turtle hits the edge of the screen, with sense on, Logo does
NOT perform a throw 'touchturtle. It does a throw
'fence,

touch, point
These two primitives only work within the screen area.



Addenda

Other Chapters

Page 7.3

Line 5 of the procedure check.key should be:
if :button = 'b [backward 10]

Page 10.5-6

The variable :objects (used in the procedure scan.list)
should be the variable :names.

Page 11.7

There is an error in bracketing in the example
delete.records.from.file. Lines 3, 6 and 7 should be:
unless infile: filename [say [cannot

find] <+ :filename escape]
unless closefile:filename [say
cannot close] <+ :filename escape]
unless erasefile:filename [say
[cannot erase] <+ :filename
escape]

Page 16.7

The interrupt mentioned on the fourth line from the bottom
should be OD1 hex and NOT OCI1 hex as stated.



RM LOGO

PN14394



RM Logo
PN 14394

Copyright (€) 1985, Research Machines Lid.

All rights reserved. Although customers may make copies of this

manual for their own use, you may make no other form of copy of any
part of it without our written permission.

MS-DOS is a registered trademark of Microsoft Corporation.

Because our policy is to improve our products and services continually,
we may make changes without notice. We have tried to keep the
information in this manual completely accurate, but we cannot be héld
responsible for the consequences of any errors or omissions.
Customers commenits are of great value to us in improving our computer

systems, publications and services. If you would like to make any
comments, please use the reply-paid form at the back of the manual.

Authors: Cathy M. Hand and Barry Morrell.
Editor: Nicola Bourdillon.
llustrations by Jane Hannah and Inkwell Studios.

Typeset by direct transfer from Research Machines Network to Linotron 202
at Oxford Publishing Services, Oxford.

Printed by The Hazell Press, Wembley.

Research Machines Limited, Mill Street, Oxford OX2 0BW.



Preface

Preface

RM Logo is a full and versatile language.

This book, RM Logo, and the accompanying
‘Beginning RM Logo’ provide:

® an introduction to the RM Logo language

® an introduction to using RM Logo on Nimbus
® alanguage reference

® 2 quick reference card

The aim is for you to understand Logo quickly and easily
and to use the extra features provided in RM Logo.

Beginning RM Logo by Hilary Shuard and Fred Daly,
is available from Research Machines, PN 14393, It
gives an introduction to RM Logo.

This book, RM Logo, is divided into two sections and
an index:

® a Concepts section

® a [ogo primitives section

® index

The Concepts section consists of sixteen chapters which
progress quickly from starting with Logo to introducing
the special features of RM Logo. Many example programs

are included for you to try out, and are given in the
following format:



Preface

it

The 1: prompt
Anything following the 1: is to be typed in by
you.

Long Lines
Some Logo lines are longer than the width of these
pages. Any indented Logo lines in this book are a
continuation of the previous line, to be typed in
without pressing the <ENTER> key. If the
line is longer than the screen width, it
appears on the next screen line.

Procedures
Logo procedures are shown with a bui ld command, a
blank line and then the text as it appears in the edit
window. You will need to type in all of the text
except for the first line (which results from the
bui ld command).

The first chapter includes <ENTER> at the end of the
Logo lines to remind you to press the <ENTER> key.
Later chapters leave it out.

The Primitives section is the reference part of the book.

It lists all of the Logo primitives in alphabetical order,
the special Logo characters, keywords and signals. Some
examples are included to show how the words are used in
programs.

The index is at the back of the book but it covers only
the Concepts section. As the primitives are listed in an
alphabetical order, they are easy to find without the
additional task of looking in an index.

The Logo examples in the book have been tested but we
cannot guarantee a perfect performance when you use them.



{

Contents

Part One Concepts

Chapter 1:  Getting Started
RM Logo
Your Logo Disk and Guides
Starting Up
On a Network Nimbus
On a Standalone Nimbus
Leaving Logo
Loading, Running and Saving Files
Introducing Logo
Logo Primitives
Procedures
Abbreviating Primitives
Words and Lists
Names
Numbers and Arithmetic
Special Characters
Setting up a Logo Microworld

Chapter 2:  Graphics
Introducing RM Logo Graphics
Turtle Graphics
Directing and Moving the Turtle
Changing the Turtle Shape
Using Colour
XOR Plotting
Absolute Graphics
Summary of Primitives

Contents

h—\b—\l—il—\l—ll—ll—dl—il—\i—‘lﬂl—-\l—‘hlh—\z-i
T T = TR s s SR, R U IS IO T N
N b= O

ol sl ol ol
(CRRN RIS N S S

]



Contents

Chapter 3: More On Procedures

Building and Scrapping
Listing Those Available

Using Inputs to a Procedure
Getting Results from Procedures
Renaming Procedures
Procedures as Lists
Summary of Primitives

Chapter 4: Using The Editor
Function Keys for Editing
Editing with Numeric Keys
Editing a List
Leaving an Edit
Errors in your Editing
Summary of Primitives

Chapter 5: Changing The Flow Of Control
Repetition
Using Conditionals
Recursion
Throwing and Catching Control
Summary of Primitives

Chapter 6: Managing Your Workspace
Manipulating the Contents of your Workspace
Preserving your Work on Disk
Replaying a Sequence of Commands
File Maintenance Operations
Summary of Primitives

Chapter 7:  Simple Input/Output
Printing on the Screen
Input from the Keyboard
Summary of Primitives

W s 0 L G
o RO R R N S

n nn Ln n
— Dy D b

DD I OX IR
nods W -

ol i
e



Chapter 8:  Arithmetic
Positive and Negative Numbers
Arithmetic Operators
Random Numbers
Summary of Primitives

Chapter 9: Words And Lists
Words
Lists
List Pointers
Other Operations on Words and Lists
Summary of Primitives

Chapter 10:  Organising Information
Introduction
A Simple Database
Retrieving Information
Building a more Sophisticated Database
Reasoning by Inference
Summary of Primitives

Chapter 11:  File Handling

Disks and Files

Creating a Simple File

Reading a Simple File

Changing Data in a File

A Few Last Words on Files
File Names
Using Temporary Files
Sorting out Disk Problems

Contents

e
Wb

010000
~] N L e

10.1
10.3
10.4
10.6
10.10
10.12

11.1
11.3
1.5
11.6
11.9
11.10
11.10
11.12



Contents

Chapter 12: Handling Keyboard Errors and Debugging

Error Handling 124
Handling Keyboard Mistakes 12.1
Handling Errors in your Program 12.3

Debugging your Programs 12.3
Using wa Lk 12.5
Using trace 12.6
Using bug 12.8
Symbolic Dumps 12.9

Summary of Primitives 12.9

Chapter 13:  Parallel Processing

Introduction 134
Problems with Parallel Processing 13.3
Mutual Exclusion 13.3
Synchronization 13.4
Problems with Local Variables 13.6
Example of Parallel Processing 13.8
Summary of Primitives 13.8

Chapter 14:  Using Multiple Turtles

Drawing Complex Shapes Simultaneously 14.1
Drawing Different Shapes Simultaneously 14.3
Creating Moving Pictures 14.4
Summary of Primitives 14.9

Chapter 15:  Setting Up A Logo Microworld
Preserving the Microworld 15.4
Summary of Primitives 15.6

vi



—~ o~ o~

o

o~

Chapter 16:  Extensions To Logo

Introduction
Floor Turtles
Loading a Ready-made Turtle Driver
Loading Ready-made Extensions
Preparing to Write a Turtle Driver or Extension
Writing a Floor Turtle Driver
Writing your own Extensions
Format of Extension files
Reading Inputs
Returning Results
Returmng Lists
Error Exit

Part Two Reference

Index

Contents

16.1
16.1
16.2
16.3
16.3
16.4
16.5
16.6
16.7
16.8
16.8
16.8

vif



(M&Mx((r\((((((.((((m




—

Getting Started

Chapter 1
Getting Started

RM Logo

Logo is a computer language that originated in the 1960s
and has kept growing in popularity. It originated as a
language reflecting a philosophy of learning: beginners
start with little understanding but, through learning,
become increasingly more sophisticated. In turn, Logo has
become a full language, offering a complete range of
activities but retaining its one original founding

principle: it is easy to use.

Logo can be used without any knowledge of the internal
workings of the computer, and without any other
specialized knowledge. You can start to make things
happen with instructions such as forward and backward.
Such words carry their every day meaning into the Logo
language and help to make it simple to use.

Turtle graphics are sometimes believed to be the whole of
Logo. The graphics are certainly important, generating
much of the enthusiasm for Logo. The turtle is a marker
on screen which allows you to draw pictures — but the
opportunity exists for you to add a floor turtle (a
mechanical device which moves around on the floor in
response to Logo instructions). RM Logo is also able to
let you use up to eight turtles on screen at the same
time, to change the shape of the turtle (to a bicycle for
example) and to let turtles sense other events happening
on screen.

Logo’s ease of use is especially beneficial in an
educational environment because Logo doesn’t ask for
specialized knowledge or experience. For example, turtle
graphics lets you draw pictures on screen without needing

1.1



Getting Started

to know about coordinate geometry. However, you are
likely to learn without realizing it as you explore Logo!
For example, you might learn by experiment that the turtle
takes 360 steps to completely turn around. In finding out
this, the idea of 360 degrees in a complete turn is also
suggested.

Logo instructions are carried out immediately after you
type them in. Interest is maintained by actually seeing
things happen after typing an instruction. If you want a
set of instructions to be carried out together then you
can put them into a procedure. One of the features of
Logo is the way one procedure can call another, and
RM Logo will let you run a number of procedures in
parallel.

RM Logo is a versatile language and the aim of this book
is to let you find and use the full features of the
language.

Your RM Logo Disk and Guides

f.2

You will have received a disk called the RM Logo Disk.

(As with any such distribution disk, the contents must be
copied to another ‘working’ disk which is used. Then, if
your working disk is lost or damaged, another copy can be
made from the master.)

This disk contains all the files needed to use RM Logo and
to demonstrate its capabilities.

The files that RM Logo needs to work are:

LOGO.EXE — the Logo interpreter

PWORD1.OVR — the Logo editor

START.LGC — the standard Logo envitonment
PROWORD.EXE — to use the Logo editor outside of Logo



Getting Started

These are accompanied on the disk by some demonstration
files. These have the file extension .def

An explanation of how to load and run the demonstration
files follows in the section, ‘Loading, Running and Saving
Files’. Demonstration files are treated just like files

or procedures that you have created yourself.

As well as this guide which briefly introduces RM Logo and
includes a reference section of the language, an
introductory book is available from Research Machines:
Beginning RM Logo by Hilary Shuard and Fred Daly,

PN 14393.

Starting Up
On a Network Nimbus

If you have a Network Nimbus, it is assumed that
everything has been prepared by the Network Manager for
you to use RM Logo and that you can join the following
instructions where they specify you type:

Logo
On a Standalone Nimbus

Your Nimbus should be switched on and displaying either
the initial Welcome screen or a drive prompt (such as A>).

® When Nimbus is displaying the welcome screen and a
message Welcome —Please supply an operating system
insert the Logo working disk into a drive. >
Either amend the date and time or press <ENTER>
twice to keep the date and time shown.

.J

The drive prompt of the drive holding the
Logo working disk appears on the screen.

1.3



Getting Started

1.4

® [f you start with a drive prompt on the screen, make
sure that your Logo disk is either in that drive or
can be accessed from it.

Following the screen prompt, type:
Logo

and press the <ENTER> key.
You are now in RM Logo!

The screen should be clear except for 1: in the top
lefthand corner. The prompt 1: indicates that Logo is
waiting for you to type a command at the keyboard. When
Logo replies to you on screen, the 1: prompt doesn’t
appear. In the examples in this book, use the prompt to
distinguish between Logo’s responses and the instructions
you type in. You type in everything following the 1:.

The position of the 1: prompt in the top left corner
indicates that you are in text mode: you cannot draw
graphics in this mode. However, by typing:

1: clearscreen <ENTER>

the screen changes to display a triangle shape at the
centre. This triangle is called the turtle and indicates

you are in graphics mode. All but five lines at the

bottom of the screen are used for drawing with the turtle.
The five lines are reserved for commands (text).




Getting Started

Text characters appearing in graphics mode are double the
width of text characters typed in text mode or through the
Logo editor.

Leaving Logo
When you want to leave Logo, type:
1: exit <ENTER>
or
1: goodbye <ENTER>

This will return the screen prompt which existed before

you typed Logo to enter into the Logo system. However,
before leaving Logo, remember to save your procedures that
you might want to use again.

If you only want to get out of a running program or
procedure, press the <ESC> key. The message Stopped !
appears on screen.

Loading, Running and Saving Files

Files are ‘containers’ for your programs or procedures.
Each of the demonstration files for example contains a
program to demonstrate features of RM Logo. A list of
these files can be seen on screen by typing:

1: demofiles

Each can be loaded typing the filename preceded by
load ' For example, load the demonstration file
cage.def by typing:

1: load ‘'cage.def
1

1.5



Getting Started

Logo returns the prompt 1: to show the file has been
successfully loaded. If the file can’t be loaded then an
error message comes on screen to indicate why.

The contents of the demonstration files are run by typing the
filename. These are the same as the name so file
cage.def can be run by typing:

1: cage
The above file has already been saved but if you create

programs or procedures that you want to keep, use the
save command to transfer them to disk.

Introducing Logo

Logo Primitives

1.6

textscreen and clearscreen are words which

do a specific action in Logo. Such words are known as
primitives and are built into Logo. When you type a
primitive as a command, you need to press the <ENTER>
key to make it take effect.

Primitives introduced or connected with material in
following chapters, are listed at the end of each chapter.
If they are listed, but not included in the chapter, then
they will be explained in the reference section at the end
of this guide. Primitives are important because they act

as basic building blocks for more complicated commands.

Some primitives need no other information to perform their
actions. For example:

clearscreen



Getting Started

Others need inputs which you can change to get different
effects. For example:

forward 50
This moves the turtle forward by a fifty steps.
backward 27
This moves the turtle backwards by a twenty-seven steps.
Lleft 90
This turns the turtle left by a ninety degrees.
right 43
This turns the turtle right by a forty-three degrees.
Notice there is a space between the primitive and its
input. Try omitting this and see what happens. Logo will
warn you with an error message and you can then retype the
correct line.

Procedures
You can build new Logo commands from any commands that
Logo already knows. These new commands are called
procedures and they are created using the bui Ld primitive.
For example, the following procedure draws a square.

Type:

1: build 'square <ENTER>

1.7



Getting Started

The screen changes to the following format:

FKEYS 4ALRM | AUDY 4 COMMANDS #
normal char | line Swap case [menu
shift word | page || Ins marker of
alt line text || Go to mark maore]
square
MOV
LR
ullo]
DEL
Ok
1
cmD

This is the edit window and RM Logo is now in edit mode.
The cursor is positioned under the first letter of the
procedure name: in this case square.

Now you can type in the

rest of the procedure square.

repeat 4 L[right 90 forward 501

If you make a typing error then remove it by
pressing the <BACKSPACE> key. This rubs out the
character to the left of the cursor. (More

editing commands are explained in Chapter 4,

Using the Editor.

1.8



Getting Started

The complete edit window containing the procedure square
looks like this:

FKEYS | 4LRp | aUDY # COMMANDS
normal char | line | Swap case [menu
shift word | page | Ins marker of
alt line text || Go to mark mare]
square
repeat 4 [right 90 forward 501
MOV
o
og
DEL
=
LR

(2]
=
o

[E3
(3

Leave edit mode and return to graphics mode by pressing
the escape key marked <ESC>. Now you can run the procedure

by typing:
1: square<ENTER>

If you want to change the contents of square you can do so
usingedit 'square orbuild 'square. The contents will be
displayed and you can change them using the keys described

in Chapter 3.

Try creating another procedure to draw a triangle. The
build command will take you into the edit window.

1: build 'triangle<ENTER>
The following text is the body of the procedure and,

except for the first line, will need to be typed in by
you.

1.9



Getting Started

triangle
repeat 3 [forward 80 left 1201<ESC>

So far procedures have been made using primitives.
However, procedures can also be built up of other
procedures. For example, procedures square and
triangle can be used to create another procedure
house:

1: build 'house

house

square

right 90

triangle

Produce the picture by typing:

1: house

All the following examples in this guide are shown with

the bui ld command, a blank line, and then the text
as it appears in the edit window.

Abbreviating Primitives

Logo allows you to type short forms of some primitives.
For example, instead of forward you could type fd.
The short forms of primitives are given under the
description of each primitive in the reference part of
this book.

Logo also allows you to type a number of primitives on the
same line, if you wish. If you keep on typing when you
reach the end of the line, text will continue onto the

next line.



Getting Started

For example, instead of typing the following:

1: forward 50
1: left 120
1: forward 50
1: left 120
1: forward 50
1: left 120

you could type:

: fd 50
Lt 120
: fd 50
Lt 120
: fd 50
Lt 120

B R . e e |
= LL] L1

or

1: fd 50 Lt 120 fd 50 Lt 120 fd 50 Lt 120
You can also link commands together with and, for example:
1: forward 50 and right 45

This is mainly used to make Logo more readable.

Words and Lists

Logo words are similar to words of spoken languages in
that they consist of characters. For example:

'cat
'computers
"Train
'2and3



Getting Started

Names

1.12

Notice that they all start with a single quotation mark
but there isn’t a terminating mark. This tells Logo that
the string which follows is a word. You can use the
character ' on its own to show a word with no characters
in it (called the empty word).

You can join words to form longer words and split them up
to form shorter ones. These operations are covered in
detail in Chapter 9.

A list consists of zero or more elements surrounded by
square brackets. Each element can be a Logo object: a
number, a word or another list. For example:

Lcats dogs birdsl
[La bl [c dl]

La b [alcl] dl
[l

You can handle lists in the same way as words: they can
be printed, broken into smaller lists or joined to make
longer ones. In fact, some primitives will operate upon
words and lists. For example:

1: say [cats dogs birds]
cats dogs birds

1: say 'cats
cats

Lists are described in more detail in Chapter 9.

Logo names can consist of letters, numbers and punctuation
characters. Logo primitives (listed in the reference

section of this book) can be written in upper or lower

case, but those you define yourself need to be in lower

case. Upper case characters slow Logo down a little. All

the Logo examples in this book are given in lower case.



Getting Started

Use punctuation characters and underlines to make names
more readable. Spaces cannot be used within a name
because they are used to separate different items such as
procedure names and inputs.

equilateral.triangle
isosceles_triangle

You have already come across one method of assigning
names: when defining a procedure, you name both the
procedure and its inputs. You can also name constant and
variable items by using the make primitive. For example,

the following command gives the name ang Le a value of 90:

1: make ‘'angle 90

Here, the make primitive creates a ‘box’ and gives it

the name ang Le. It then puts the value 90 into the

box. If you now want to look at the contents of the box,
you prefix its name with : (dots), as shown below:

1: say :angle

90

You can also look at the contents of a named object by
using the va Lue primitive. For example:

1: make '"angle 90
1: say value 'angle
90

This may seem more long-winded than using dots and in
cases like the one above it is. However, va lue allows
you to do things you can’t do with dots. For example:

1: make 'bathroom [bath sink towel
rubber.duckl]

1: say value first [bathroom kitchen bedrooml

bath sink towel rubber.duck

1.13



Getting Started

Numbers and Arithmetic

Logo numbers consist of a string of one or more digits and
may contain a decimal point. You must not precede them
with a quotation mark because they are not words.

You can perform arithmetic upon numbers and two types of
operators are available.

Infix operators go between the items and include
+ (add), — (subtract), / (divide) and * (multiply). For
example:

1: say 10 = 13
130

Prefix operators go before the items and include
add,divide,multiply and remainder.
For example:

1: say add 10 13
23

Other functions available include cos, pi, sin
and tan.

Special Characters

This section describes characters which have a special
meaning in Logo, for example:

' @ [ 1

If you want to use any of these special characters as
ordinary characters in text, you must prefix each one with
the special character (\) whenever it is used. The escape
character will be printed by print but not by say.



Getting Started

Quotation mark or '
This indicates that what follows is to be used as a
word or a name. It is not the name of a procedure so it
can’t be run!

Dots or :
This refers to the contents of a variable.

Square brackets or [ |

These are used to surround a list. Note that words in the
list do not necessarily start with a quotation mark.

Backslash or\
This is the special character indicating that the
subsequent character is to be treated as an ordinary text
character and not a special character. For example:

1: say 'Cathwy\'s.shoes

will show as Cathy's.shoes on the screen. Try it without
the backslash to see the difference.

The sequence\ prints as\.

\ can also be used to give the corresponding character of
subsequent hexadecimal digits. For example:

1: say "01 <ENTER>
produces a face character.
Round brackets, parentheses or ()

These are used to group items of an expression into the
order in which you want Logo to evaluate them.



Getting Started

Comment or ;

Comments in a program are preceded by a semicolon. For
example:

if :x = 0 [stopl ;Finished

Setting Up A Logo Microworld

You may want to alter or reduce the facilities that Logo
offers, or extend them to produce a Logo learning
environment, or microworld. You can:

® Redefine some of the primitives to change their effect.
For example, you could redefine forward so that
forward 10 moves the turtle by 100 steps

® Treat some of your procedures as ‘primitives’ which
cannot be edited by users

® Rename primitives for use with procedures from other
dialects of Logo

® Create a news file whose contents are displayed
whenever someone starts up the system

The actions needed are described in Chapter 15.



Graphics

Chapter 2
Graphics

Introducing RM Logo Graphics

Logo’s immediate appeal is due largely to its graphics.
RM Logo is a very powerful version of Logo that lets you
use the fast and powerful graphic facilities of the

RM Nimbus.

Logo is an excellent language for learning and exploring
programming because it gives you a symbol to think with;
the turtle shows you where you are and which way you are
going. You can make the turtle turn, move in straight

lines or arcs; drawing, not drawing or erasing as it goes.
You can define the shape of your turtle, make it print its
shape and make it invisible.

The first section of this chapter describes Logo’s Turtle
Graphics, including most of the actions possible with one
turtle. Multiple turtles are explained in Chapter 13.

This is followed by an explanation of using colours. You
can choose the colours of the turtle, of the lines it
draws and of the background it draws on.

As well as turtle graphics, where your instructions move
the turtle from its present position, Logo has absolute
graphics, where the screen is defined as a set of
coordinates which your instructions draw to. The final
section of this chapter describes this use.

2.1



Graphics

Turtle Graphics

Type c learscreen to go into graphics mode. The
graphics screen has a turtle shape in the centre and the
bottom five lines are reserved for text. To clear

pictures from the graphics area, use the command c Lean.
Text can be wiped off the writing area at the bottom of
the screen using c Leantext.

The area that the turtle can be seen to move in is the

grid shown above. You can put a boundary around this area
using fence which will stop the turtle going out of the

area. When fence is not applied, the turtle can move out

of the area and out of sight.

Directing and Moving the Turtle

22

The simplest and probably the most used commands to move
the turtle are forward and backward. The turtle

moves either forwards or backwards in the direction it is
pointing.

The turtle has a pen which can be lowered to mark wherever
the turtle moves (drop) or raised so that the turtle moves
without tracing its direction (Lift). The pen is usually
down when you enter Logo.

Following the command c Learscreen, the turtle points
“north” or up towards the top of the screen. The
direction that the turtle points is called its drawing
heading and measured in clockwise degrees from “north”.



Graphics

Typing:
1: right 90
turns the turtle to face “east”.

Lleft,right and seth are all commands that
change the direction that the turtle is pointing.
Explanations of how to use them are covered in the
reference section.

You can set the direction for the turtle to move without
changing the direction it is pointing. The direction the
turtle moves in is known as the movement heading and can
be changed using setdir. The turtle’s initial speed, like
the movement heading, is preset to zero degrees. Use
setspeed to make it move. For example:

cs

1:
1: setdir 90
1: setspeed 20

the turtle will move to the “east” while pointing “north”.

Whenever you want the turtle to stop moving, reset it’s
speed to 0. To return it to the centre of the graphics
screen, use the centre primitive.

23



Graphics

Changing the Turtle Shape

24

The turtle has appeared until now as an arrow shape but
this can be changed. A new shape can be created using
defineshape and taken up by the turtle using the
command setshape, or by using the procedure esh.def
given on your RM Logo Disk. The following is an example
of the first method.

You might find it easiest to draw out the shape on paper
before you actually use defineshape. The following
steps show you how to define a house as a turtle shape.

® Draw the shape out on a grid. Your shape should be
drawn a sensible size to move around the screen. The
house has been drawn on a grid 4 x 5 units

L
|

L

e Fill in the cartesian coordinates for each point.

04

-84 8-4

-B12 8,-12



Graphics
® Write out the coordinates as a list. This list
follows the name of the shape, house.

The whole command can be completed now.

1: defineshape [house [—8—12] [8—121 [8—4] [0 4]
[—8—4]1 [-8—121]

The last coordinate pair are the same as the first so that
the shape is ‘closed’.

To change the current turtle’s shape to the new one, type:
setshape 'house

To get back to the original turtle shape, type:

1: tell 1

1: vanish

1: tell 1

The tell 1 command shows you are directing turtle number
one. You can have up to eight turtles on the screen (see
Chapter 14), numbered 1 to 8.

You can also choose to make the turtle disappear from view

using hideturt Le. Bring it back into view with
showturtle.

Using Colour
RM Logo allows you control over the:
turtle colour
pen colour

background colour

(but the border colour surrounding the Logo screen remains
the same).

2.5



Graphics

2.6

You can change and check the colours using the primitives:

bg

Returns background colour
colour

Returns current turtle colour
pc

Returns pen colour
setbg

Sets background colour
setc

Sets current turtle colour
setpc

Sets pen colour

The table below shows the numbers associated with colours:
Number Colour

black
dark.blue
dark.red
purple
dark.green
dark.cyan
brown
light.grey
dark.grey
Light.blue

10 Light.red

11 magenta

12 Light.green

13 cyan

14 yellow

15 white
The colours you can get on your monitor depend on the
monitor you are using. The full range of colours listed
above can be seen on a monitor capable of generating all
sixteen colours. You might otherwise be using a colour
monitor which displays eight of the colours, or a
monochrome monitor giving sixteen shades of grey.

Veo~NOVEAEWN =0



Graphics

You can use colour numbers in commands. For example:

1: ¢s
1: setbg 1

will change the background colour to dark blue.

You may find it easier to remember the colours by name
rather than by number. The procedure colours. lgp

on your RM Logo disk allows you to use the names of the
colours as well as the number. For example:

cs
setbg dark.blue

1
1
will change the background colour to dark blue.

If you try setbg cyan and setbg magenta you
will see that cyan is greenish blue and magenta is
crimson.

XOR Plotting
There are two ways of drawing on the screen:
® destructive overdrawing the default

® non-destructive overdrawing (XOR or exclusive OR
plotting)

With destructive overdrawing, you draw over anything that
is already there, and the colour of the new drawing

replaces the covered part of the old. Non-destructive
overdrawing merges the colours of the new and old.

If you want to plot colour in the non-destructive mode,
you do so by giving the penreverse command. For example:

1: setpc 14
1: penreverse

2.7



Graphics

gives non-destructive plotting in yellow. You can return
to the default over plotting by using pennormal.

The turtle shape is always drawn in non-destructive mode.

It is also worth pointing out the colour drawn by the
turtle’s pen depends on the background colour. A black
background will guarantee an accurate turtle colour.

Absolute Graphics

The movement primitives forward, back, Lleft
and right all move the turtle relative to its current
position. If you wish, you can move the turtle relative
to the system of coordinates shown below by using the
primitives setx, sety andsetpos.

¥
93

-X X
- 0,0 158

i
-94

and setpos [—159 —941 moves the turtle to the bottom
left corner of the screen (without drawing a line).

Logo allows you to draw a line between any two points on

the screen using Line, and to draw coloured points on the
screen using setpoint.

2.8



Summary of Primitives

arcl

Draws left hand arc
arcr

Draws right hand arc
bg

Returns background colour
centre, center, (ct)

Moves turtle to home position
clean (cl)

Clears graphics area of screen
cleantext

Clears text area of screen
clearscreen (cs)

Clears screen
colour (colour)

Returns turtle colour
defineshape (dsh)

Defines turtle shape as list
dir:

Returns direction of movement
drop

Drops turtle’s pen
eraser

Erases lines over which it passes

fence

Prevents turtle going off screen
fenceq

Tests if fence has been used
fill

Fills area of screen
forward (fd)

Moves turtle forwards
heading

Returns turtles drawing heading
hideturtle (ht) _

Hides turtle shape

Label _ _ _
Prints text in graphics area

Graphics

2,9



Graphics

2,10

left (Lt

Lift

Line

near

nofence

nosense

pc

Turns turtle to left

Lifts turtle’s pen

Draws line on screen

Tells you if turtle is close to another turtle
Allows turtle to move off screen

Cancels sense command

Returns current pen colour

penreverse (px)

Lowers the turtle’s pen to draw in XOR mode

point

Returns position of current point on screen
revereseq

Tells you if turtle’s pen is reversed
right (rt)

Turns turtle to right
rubber

Erases lines which turtle passes over
sense

Turtle senses presence of another turtle or change in

background colour
setbg

Changes background colour
setc

Changes turtle colour
setdir

Changes turtle’s direction of movement
seth

Changes turtle’s direction of drawing
setpc

Changes pen colour
setpoint

Sets a coloured dot on screen



Graphics

setpos

Changes turtle’s position to [x y]
setshape

Changes current turtle shape
setspeed

Gives turtle a constant speed
setx

Moves turtle in x direction
sety

Moves turtle in y direction
shape

Returns current turtle shape
shapedef

Returns shape as a list
shapes

Returns list of shapes defined
showturtle (st)

Makes turtle visible

speed

Returns turtle’s current speed
stamp

Stamps a shape on screen
tell

Addresses subsequent commands to named turtle(s)
textscreen (ts)

Reserves screen for text
told

Returns name of current turtle
touch

Returns the background colour under the pen
towards

Returns heading and distance to named point
turtles

Returns list of active turtles

upq
Returns ' true if pen is up
vanish
Removes turtle(s) from list of active turtles
wrap

Wraps turtle movement around screen 211



Graphics

wrapq

Tells you if wrap has been selected
xcor

Returns turtle’s x coordinate
ycor

Returns turtle’s y coordinate

2.12



Procedures

Chapter 3
More On Procedures

Procedures allow you to approach programming problems in a
structured and logical way. You can break a complex

problem into its smaller components, and tackle the

smaller problems by building procedures to solve each one
separately. Use of procedures encourages a structured
approach that often leads to efficient, elegant programs

that are easy to check and easy to develop.

Some languages, including Pascal and Logo, allow you to
store your procedures independently, and so to build up a
library of the procedures you want to use repeatedly.

In Logo, procedures will run without a calling program so
you can test them as you build them. You can edit and
delete them, or you can treat them exactly like the
primitives. It may be helpful to think of building a
procedure as “teaching Logo a new command”.

Building and Scrapping
You build procedures using the bui Ld primitive described
in Chapter 1. If you want to, you can delete them from
the workspace by using scrap.

Listing Available Procedures

You can get a list of all the procedures you have copied
or created in the workspace by using titles.

1: say titles
square triangle polyspi

3.1



Procedures

Using Inputs to a Procedure

3.2

Primitives such as forward and left use inputs to know
what precise action to take: for example, forward 55 for
the turtle to go forwards 55 units. Your procedures can
have inputs too.

Change the procedure square in Chapter 1 by typing:
1: edit 'square
so that it looks like:

square 'side
repeat 4 [left 90 forward :sidel

This allows you to change the size of the square each time
the procedure is used. Here is the screen picture after
running first square 50 and then square 75.

[T

This is what happens. :side in the first line creates a
‘box’ called side. When you run the procedure, the value
following the procedure name goes into the ‘box’. The
value in the box is used whenever :side appears in the
procedure. So, when you type in:

square 50



Procedures

Logo takes the number 50 and puts it into the box. It
then uses the contents of the box as the value for the
primitive forward in the line

repeat 4 [left 90 forward :sidel.

The colon : is called dots in Logo and it indicates the
contents of something (in this case the box called side).

If you want, you can have a number of inputs to a
procedure. For example:

1: build 'rectangle

rectangle 'sidel 'side2
repeat 2 [forward :sidel right 90
forward :side2 right 901

This procedure would need two inputs to run. For
example:

1: rectangle 30 60

If you only give one input by mistake, an appropriate
error message will appear on the screen. rectangle
will take the first two inputs if you give more than two
numbers, and appear to ignore the others.

Getting Results from Procedures

Your procedures can also return values after

doing tests or calculations. They do this using the
result primitive. For example, the following procedure
calculates the square of a number and returns the result:

1: build 'number.square

number.square 'no
result zno * :no

33



Procedures

The full stop is used in number.square to make

it more readable. You can’t use a space for this purpose
here; if you did, number would be used as the procedure
name.

When you give this procedure a number as an input, it
outputs the square of the number and you can print this
using say:

1: say number.square 13
169

Renaming Procedures

3.4

If you want to call a procedure by another name, use the
primitive rename.

rename ‘'polygon 'six.sided.figure

This completely erases the name polygon and the procedure
takes the new name six.sided.figure.

However you can rename a procedure during an edit by
replacing the old name with the new name. This gives you
two copies of the procedure: one as it was before the

edit with the old name and text; one with the new name
and edited text.

If, instead, you want to give the procedure an alternative
name and still let it be known by its original name, you
can use alias. For example:

alias 'six.sided.figure 'hexagon

will let you use either of the names hexagon and
six.sided.figure for the previous procedure.
When you change the contents of one, you change the
contents of the other too.



Procedures

Procedures as Lists

Sometimes, you might want to manipulate a procedure in the
form of a list. define allows you to create a procedure

in this way and text lets you list it in the same form.

For example:

1: define [[square.number 'nol [result :no * :noll
1: say square.number 12
144

1: print text 'square.number
[Csquare.number 'nol [result :no * :noll

The input to def ine consists of a list of lists. The
first list holds the procedure’s title line. The rest
consist of each procedure line in the form of a list.

def1ine is most useful when you want to write procedures
which define other procedures. It isn’t worth using
define to build a procedure from command level: if the
procedure is a big one, you are likely to make mistakes by
mismatching the square brackets. Use bui Ld instead for
the procedures ‘built’ from commands.

An example of the use of define follows. It
effectively runs a procedure as you are defining it.

1: build create

create 'name
define putfirst :name get.line readlist

1: build get.line
get.line 'text
if :text = [quit]l [resultl]]

run :text
result putfirst :text get.line readlist

3.5



Procedures

When you now use create, each Logo line that you type in
will be executed and then stored. When you type qui t, the
procedure will be created. You cannot have inputs to the
new procedure in this version of create. For example:

1: create 'new.house
triangle

right 90

square

quit

Summary of Primitives

3.6

alias

Renames procedure but remembers old name
bui ld

Invokes the editor
bury

Buries procedures so that they cannot be edited,
listed, saved, renamed or deleted
define
Defines procedure in the form of a list
edit
Invokes the editor
editlist
Invokes the editor to edit a list and returns the list
in the form it was given
edlist
Invokes the editor to edit a list and returns the list
as a list of lists
expose
Unburies procedures
rename
Renames a procedure
scrap
Destroys a procedure
titles
Returns list of (unburied) procedures
text
Returns definition of a procedure as a list



Chapter 4

Using the Editor

The Editor

The RM Logo editor is used to create and change your
procedures. It can be called from either text or graphics
mode. If you want to know more about any of the keys
mentioned in this chapter, please refer to your Nimbus
Owners Handbook which gives a full description of the
Nimbus keyboard.

When you use bui Ld to create a procedure, the editor
screen is displayed and it looks like this:

FKEYS |[4LRM | auDY # COMMANDS 3

normal char | line || Swap case [menu
shift word | page || Ins marker of

alt line | text | Go tomark more]
MOV

o

O

DEL

s

[v]
=
=]

E3
3

When you type in the lines of your procedure, they will
appear in the central “window”.

4.1




The Editor

Function Keys For Editing

4.2

The keys on the left of the keyboard marked <F1> to <F10>
are function keys and are used to edit text in the window.

They are displayed on the left side of the edit window,
not with the numbers <F1> to <F10>, but showing their use:

MOV
cursor movement BE‘]
(left right up and down) FIEI
L
_DEL
text deletion EHE
(left right up and down) ]D
CMD
special command keys |£ *

Text at the top of the window tells you the effect of
pressing one of these function keys either on its own or
while pressing the <SHIFT> or <ALT> keys.

FKEYS <4LRp | AUDVY # COMMANDS *
normal || char | line | Swap case | [menu
shift word | page || Ins marker of

alt line text || Go to mark more]




The Editor

The top row
(identified by the word “normal” at its left hand
side) shows the effect of pressing a function key on
its own.

For example, pressing <F1> moves the cursor one
character to the left and pressing <F9> changes the
case of the character underlined by the cursor.

The middle row
(identified by the word “shift”) shows the effect of
holding down the <SHIFT> key and then pressing a
function key.

For example, using <SHIFT> and <F1> moves the
cursor one word to the left. Pressing <SHIFT>
and <F6> deletes one word to the right of the cursor.

The bottom row
(identified by the word “alt”) shows the effect of
holding down the <ALT> key and then pressing the
appropriate function key.

For example, using <ALT> and <F1> moves the
cursor to the start of the current line. <ALT>

and <F6> deletes text on the line to the right of the
cursor.

The best way to become familiar with these keys is to type
in a simple procedure and then try using them. Once you
have practised and have a basic understanding of their
use, you will find the screen text a useful quick

reference.

Editing with Numeric Keys

The numeric keypad on the right of the keyboard can also
be used in editing. It is quite easy to anticipate what
happens but here is a table of the keys and their actions:

4.3



The Editor

4.4

Editing Action

Move cursor one character to left

Move cursor one character to right

Move cursor up one line

Move cursor down one line

Move cursor to beginning of text

Move cursor to end of text

Move cursor up one page

Move cursor down one page

Delete character under cursor

Delete character to left of cursor

—= 00




The Editor

Editing a List

One helpful feature of the RM Logo editor is the way it can
be used to edit lists. If you want to edit a list, use

the primitive edlist and follow it with the name or

actual list. The entries in the list will then be

shown in the editor window in the following way:

1: make 'newlist edlist [ab cd [e f gl]

FKEYS 4LRF | aUDY # COMMANDS
normal char | line Swap case [menu
shift word | page | Ins marker of
alt line text || Gotomark | more]
ab
cd
OV efg
LR
ulfo]
DEL
L||R
CMD

After amending the list press <ESC> to leave the editor.
The list can be printed on screen in its amended form. For
example:

1: print :newlist
[LCabl LCcd]l [e f g hll

Leaving an Edit

You can get out of the editor and preserve your procedure

by pressing <ESC>. Alternatively, you can leave the editor

and destroy what you typed by pressing <F10> and then <A>.
The procedure or list will still exist as it was before

the editing.

4.5



The Editor

Errors In Your Editing

Certain errors (notably unmatched brackets) have to be
corrected before you can exit from the editor using <ESC>.
In this case, an error message will appear on the bottom

line of the screen and you won’t be able to leave the

editor (other than by using the <F10> and <A> keys) until
you find the error and correct it.

It is also worth pointing out that you mustn’t break up

Logo instructions that need to be on one line. For

example, thebranch. ..case command must be on one line.
Long lines are shown in this book by indenting the
continuation lines. For example:

branch :x>0 [result 'positivel case :x=0
Cresult 'zeroldefault [result 'negativel

should be typed in on one line without a carriage return:
If you keep typing into the editor window, text moves out

of the window on the left to allow you to see that you are
continuing to type on the same line.

Summary of Primitives

4.6

bui ld
Invokes the editor

edit
Invokes the editor

editlist
Invokes the editor to edit a list and returns the list
in the form it was given

edlist
Invokes the editor to edit a list and returns the list
as a list of lists.



Flow of control

Chapter 5
Changing the Flow of Control

The simplest programs “start at the beginning, go to the
end and then stop” — their instructions are carried out

one after the other and they may be said to have a linear
flow of control. For example, the following simple program
gives the eight steps necessary to draw a square.

forward 50
Left 90
forward 50
left 90
forward 50
Left 90

— o —
m EE BN WA AR

There are three structures which enable you to write
complex programs without having to itemise every step.

Logo allows you to write just one instruction, telling the
computer to do the repetition, either for a given number
of times, or forever.

You can tell the computer to carry out instructions only
if certain conditions apply, and to carry out other
instructions if not.

You can also build procedures that call themselves,
probably using conditions to test whether they should
stop. This is called recursion.

These three ways of determining the order that
instructions are obeyed enable you to write powerful
programs quite simply. You define the logical sequence
of instructions and then tell the computer to do the work.

ST



Flow of control

Repetition

5.2

You can repeat a list of commands a number of times using
the repeat primitive. For example:

1: build 'square

square
repeat 4 L[forward 50 left 901

1: build 'spinning.squares

spinning.squares
repeat 6 [left 60 squarel

The repeat lines tell Logo to obey the list of primitives
inside the [ | brackets 4 and 6 times, respectively.

If you want to, you may separate commands by using and.
For example, you could change spinning.squares
to the following:

1: edit ‘'spinning.squares

spinning.squares
repeat 6 [left 60 and squarel

Using and also gives you fuller and more helpful error
messages if you make a mistake.

If you aren’t sure how many times you want a list of
commands to be repeated, you can use forever:

1: build 'polygon

polygon 'angle 'side
forever [forward :side left :anglel



Flow of control

This will repeat the commands inside the [ | brackets
indefinitely and draw a closed shape. You can stop the
turtle drawing by pressing <ESC>. The type of figure is
determined by :angle; for example, a value of 90 draws a
square, a value of 60 draws a hexagon. The size of the
figure depends upon :side.

Using Conditionals

We use the word if in everyday speech. For example:

"If we have some eggs, I’ll make an omelette.’
‘If Father Christmas comes down the chimney, the trip
wires will get him!’

Sometimes, it appears with otherwise:

If there’s anything decent on television, I'll watch
it, otherwise ’ll switch it off.’

Fach of these sentences starts with a test or condition
which is either true or false. After that, there is an
action which will be taken if the condition is true. In
the last case, there are two actions: one is taken if the
condition is true, the other if the condition is false.

Logo has an if statement, as well, and it is called a
conditional. For example:

1: build 'compass

compass

if heading = 0 [say 'northl
if heading = 90 [say 'eastl
if heading = 180 [say 'southl
if heading = 270 [say ‘'west]
if heading = 360 [say 'northl

1: repeat 360 [right 1 compassl]
5.3



Flow of control

5.4

This prints out the main compass points as the turtle
turns. Each i f statement tests for a condition (for
example, heading = 0) and takes an action if the
condition is true.

In the example, there is only one action and it is held
within the [ ] brackets. You could, if you wanted, have
two sets of [ ] brackets and this would correspond to the
second form of #f: (if...action1, otherwise...action2).

For example:
1: build ‘'sign

sign 'number
if :number < 0 [result 'negativel
[result "positivel

Here, if the condition :number < 0 is true, the
contents of the first [ ] brackets are obeyed; if it is

false, Logo obeys the contents of the second [] brackets.
For example, try running sign 14 and sign —20.

Two other conditionals similar to 1f are available in
RM Logo: unless and branch.

unless executes a command unless a condition is true.

branch is a little more complex and is described in the
Reference part of this book.

There are also two other conditionals which are similar to
repeat and forever:do...until anddo...while.

do...until repeats a command list until a specified
condition is true. The commands are run one or more times.

do...whi le repeats a command list as long as a specified
condition is true. The commands are run zero or more
times.



Flow of control

One command that sometimes gets you out of a problem is
goto... Useit when you need to escape from your
procedure.

if not assertedq :p :v [goto 'troublel

trouble:—say [sorry I can/'t helpl stop

trouble:—is a tag and the goto primitive passes
control to the command after this tag. goto only works
within a procedure. If you want to pass control outside
of the procedure you will need to use throw.

Try not use goto frequently. Structured programs are
clear, efficient and easily checked, so it is usually
better to use procedures.

RM Logo gives you a wide variety of tests in the infix
form (for example, = and <) and also the prefix form (for
example, equalq and Lessq). They are described in
detail in the Reference part of this book.

Recursion

Recursion is another way of repeating some actions when
you don’t know how many repetitions are needed. It
involves a procedure calling itself. For example:

1: build 'spiral.square
spiral.square 'side
forward :side

right 90

spiral.square :side + 2

If you type something like:

1: spiral.square 10
5.5



Flow of control

this will draw lines of increasing size, producing a
square pattern. The last line is called the
recursive line or the recursant.

You can stop Logo drawing lines by pressing <ESC>, but it
is better if your procedure stops itself using if:

1: edit 'spiral.square

spiral.square 'side

if :side > 150 [stopl
forward :side

right 90

spiral.square :side + 10

Below is an example of recursion using numbers:
1: build 'countdown

countdown '"number

say :number

countdown :number —1

When you run countdown, the following happens (very
quickly):

1: countdown 4
4
3
2
1
0

=l
=2

and so on, until you press <ESC>.



Flow of control

When you type in:
1: countdown 4

the first line of countdown prints 4 and the next
line is then executed. This is effectively:

countdown 3

and it has the same effect as if you had typed it in from
the keyboard: it prints 3 and then tells Logo to do the
following:

countdown 2

This carries on until you press <ESC>. If you want to
stop countdown when it reaches zero, you can do so
with the following modification:

1: edit 'countdown

countdown 'number
say :number

if :number = 0 [stopl]
countdown :number —1

After running countdown it will end on the screen
with:

-0 =N

The 1: is the Logo screen prompt of course.
Here is another numeric problem that needs a recursive

procedure. It involves the addition of several
consecutive numbers:

3.7



Flow of control

5.8

++ +
NN
+ 4
[E N
+
-~ O

1
1
1 10

1T+ 2 +3+ 4 + coe + N = wua

In each of these cases, the addition is the same as the
one on the previous line, but one more number is added.
In other words, the sum of all the numbers up to and
including n is the sum of numbers up to and including
(n—1) plus n.

This can be done in Logo with the following recursive
procedures:

1: build 'sum.n

sum.n 'n

if :n = 1 [result 1]
result :n + (sum.n :nm1)

or

sum.n :n
result if :n = 1 [1] [:n + (sum.n :n—1)1]

When run, the procedures produce the same result. For
example:

1: say sum.n 4
10



Flow of control

Throwing and Catching Control

Control has been shown to move through procedures. Once
the actions in a procedure have all been completed,

control either moves to the next procedure or stops if

there are no more.

throw and catch are a way of conditionally transferring
control from a procedure back to another which has been
marked to receive control. The procedure that throws
control need not have been completed. The following
procedures demonstrate this happening.

1: build 'top.prog

top.prog
catch 'rock [mid.progl] ;top.prog catches control
say 'done

1: build 'mid.prog

mid.prog
say 'all
bottom.prog
say 'lost

1: build 'bottom.prog

bottom.prog

say 'is

throw 'rock ;bottom.prog throws control
say 'completely

The program is run by typing top.prog and returns:
all

is

done

5.9



Flow of control

rock is a signal which bottom.prog throws to the
procedure that called bottom.prog. If the calling
procedure can’t deal with the signal rock, it throws it to
the procedure that called it. This action repeats until
either the signal is caught or the program ends. Throwing
a signal which is not caught does not give an error.

The RM Logo system throws signals that you can catch in
your programs. The two most important of are:
‘error
throws a signal on encountering an error. 'a + 'bis
an illegal sum butcatch ‘error [print 'a + 'bl
will print nothing,.
'fence
If you have fenced the drawing area of the turtle then
a signal is thrown if the turtle crosses the edge.

More information on handling errors with catch and
throw is given in chapter 12. Other system commands
throwing signals are included in the reference section.

Summary of Primitives

5.10

await

Suspends calling process until a condition is ' true
begin

Runs a command in parallel with current process
catch

Accepts control from a throw
do...until

Runs a list of commands until condition is true
eequalg (==

Tests if inputs are exactly equal
equalg (eqq,=)

Tests if inputs are equal
escape

Stops current procedure and any calling procedure
end

Stops current procedure



Flow of control

forever
Repeats a command forever
goto
Jumps to a given label
greaterequalg (geq, >=)
Tests if first input is greater than or equal to the
second
greaterg (grq, >)
Tests if first input is greater than the second
if
Executes one of two commands depending upon the
state of a condition
lessequalg (leg,<=)
Tests if first input is less than or equal to the
second
lessqg (lsq,<)
Tests if first input is less than the second
parallel
Suspends calling process and runs a command

repeat
Repeats a command a number of times
result
Returns result of a procedure
run
Runs a list of commands
stop
Stops current procedure and returns to calling
procedure
throw

Passes control to the appropriate catch
unequalg (ueq,~=)
Tests if inputs are unequal
unless
Executes a command unless a condition is ' true
whenever
Evaluates a test repeatedly and runs a command
when itis 'true. Used in parallel processing
while
Executes a command repeatedly when a test returns true

5.11






Managing your Workspace

Chapter 6
Managing Your Workspace

Your computer’s memory is called its workspace and is used
to hold procedures and variables. You can print the
contents of the workspace, delete them and modify them
using primitives described in the first section of this

chapter.

When you switch off your computer, the contents of the
workspace are lost, so you need to copy them on to disk if
you want to use them again without having to type them in
again. The way you do this is described in the second
section.

The third section shows how you can ‘capture’ a sequence
of commands typed in and replay them at any time.

Finally, the last section describes a number of file
maintenance primitives.

Manipulating the Contents of your Workspace

You can display the contents of your workspace on screen
using titles. For example:

1: say titles
square triangle rhombus

You can display (“print out”) procedures on screen using
po. To show the contents of one procedure for example:

1: po 'triangle
triangle 'steps
repeat 3 [fd :steps Lt 120]
6.1



Managing your Workspace

Or you can display the contents of several procedures
together. For example:

1: po [triangle squarel

Unlike bui Ld and edi t, any word input to po must
have a quotation mark.

Alternatively, text will return the contents of a
procedure in the form of a list:

1: text 'triangle
returns:

[Ctriangle 'sidel [repeat 3
[fd :side Lt 120111

If you want to delete a procedure, you can do so using
scrap:

1: say titles
square triangle rhombus

1: scrap [triangle rhombus]

1: say titles
sSquare

Preserving your Work on Disk

6.2

You can copy your procedures onto disk using the save
command. They are then preserved when the computer is
switched off. For example, the following command saves
all your procedures in the file shapes. Lgp:

1: save 'shapes.lgp



(

Managing your Workspace

Now, when you switch on your computer again, you can load

the procedures back into workspace by typing:
1: load 'shapes.lgp

All of the procedures in the file shapes will be loaded.

Replaying a Sequence of Commands

You can make a record of everything typed using the
dribble primitive. For example, if you type:

1: dribble 'session

all subsequent commands will be written (dribbled) to the
file session. If this file already exists, the

commands will be added to the end of it.

When you type nodribble, dribbling will stop.

If you now want to replay the sequence of commands typed
in, just type:

1: replay 'session

The replay will stop when the end of the file is reached.
If an error occurs, the file will continue to be read.

If you want to ensure that the replay stops when an error
occurs, you must use consult:

1: consult 'session

6.3



Managing your Workspace

File Maintenance Operations

6.4

At some point you will want to do some or all of the
following operations:

® Delete (or erase) a file
® Rename a file
® Look at the disk directory

The primitive erasefi Le allows you to do the first
of these. For example:

1: erasefile 'shapes.lgp

will erase the file shapes, if it exists, and return the
value ' true. If not, it will return the value 'false.

To rename a file you use renamef i Le. For example:
1: renamefile 'shapes.lgp 'newshapes.lgp
changes the name of the file shapes to newshapes.

You can return the contents of a disk directory to your
program, in the form of a list, using thedirectory
primitive.

directory takes one input in the MS-DOS format but
remember that the * and : characters are special to Logo;
a backslash character \ is needed to protect them. For
example:

1: print directory "w*.lgc
or

1: print directory 'shapes.\w*
or

1: print directory "b:wx.lgp



Managing your Workspace

Summary of Primitives

consult
Replays command file and stops on error
dribble
Writes all subsequent commands to a command file for
replay
dribbleq
Tests whether session is being recorded
erasefile
Deletes a file
keep *
Saves named procedures in a file
load *
Loads procedures from a file
po
Prints contents of procedures
print

Prints text on screen including list brackets and
special characters

renamefile
Renames a file

replay

Replays a command file and ignore errors
save *

Save procedures in a file
say

Print text on screen without list brackets
scrap

Erase a procedure from workspace
text

Return procedure in the form of a list

* These are Logo library procedures, loaded and buried
when you enter Logo. See Chapter 15 for more details.

6.5



AR ST L A AANEUEAS [0 1.

.

<

3
4
— PR i -

. R

MUSE 0K CUTEL. n*u:u )u.(p«r $55 12 JOL QI0IC r;r..‘ir
- LPS2C I8 | \m‘o piplac, Lroceqouee’ josqey sug pnusq

gsima bmc:gnu._ W L6 JOLID DY § ek

NN AN

;’E LeXL _ _ :
| h Eie2¢ ¥ heoceqmic poim motgebycs - iy
' 20190 2 Ln il :
W% ' ”f_,quk 531 O 2CLLC re._fx}ls')r:{ [ pLeCFaia
) T 2sky ‘ ar ; .
b . 29sc broceqmice w 5 gye
;i 296
‘jv L pebyske ¥ counpyng (e SUq IBUOLE G102
! E Lebrek :

gopauc's jife
LOUSWEL! (6
ebeaan| cpsracoee

- LIU(R (%21 OU 203661 TCquuk }I?L p!.af'gm g
& bLiug i
a LIz coneur O.t bmcr,qnm
rousge brocsgme: gon s (e
' o8 . = SR s
- : 2956k nyicy brotegmee 1 s pyc -
resh '
Dejeiee 3 fije
GLB2GLiTE by
L6212 tporpot camon [ poni® Lecowgeq .
g auippisd ' :
w T by il

LSRR S 2 pReOiSEE COMIMrIIME (0 CHIDTFIG (I ;q,.-.i
A4pPIS | . 2
; gebfsha cowuveg gie SRy aobs oy cuo

CpURATE

BNEAN O AN O A




—,

Simple Input! Output

Chapter 7
Simple Input/Output

This chapter describes a number of types of simple input
and output which do not fall within the scope of turtle
graphics.

Printing on the Screen

You can print on the text area of the screen using the
primitives say, print and type.

say prints the value input to it and follows this with
a carriage return, For example:

1: say 1 + 3
4

1: say [hello there!l]
hello there!

Notice that lists are printed without their outermost
brackets.

print has a similar effect to say, but lists are printed
with their outermost brackets. For example:

1: print 1 + 3

4

1: print [hello there!l
Chello there!l

T |



Simple Input! Output

type is similar to say, but the text output is
not followed by a carriage return. For example:

1: type 'banana
banana1l:

type is ideal for sending escape sequences because it
does not automatically give a new line.

You can output text to the graphics part of the screen
using Labe L. This prints text at the current turtle
position.

Two other primitives which can be used to effect with say,
print and type are setcursor and cursor.

setcursor moves the text cursor to a given position and
cursor returns its position in the form of a list. For
example,

setcursor [22 16]

moves the text cursor to line 22 and column 16. Text mode
has a different arrangement to graphics mode:

-

line

line
25

column column

text mode graphics mode

7.2

40



Simple Input/ Output

Input from the Keyboard

The primitive key will suspend the process that called it
until you strike a key. It will then return the value of

the key struck. Digits are returned as a Logo number,
other characters are returned as one-character words. If
Logo is reading a command file, key still returns the next
character from the keyboard.

The following procedure uses key. It lets you control the
turtle’s movement using only five keys:

1: build 'move

move
check.key key
move

1: build check.key

check.key 'button

if :button 'L Cleft 101

if :button 'r Cright 101
if :button 'f [forward 101]
if :button 'b [back 101

if :button 'c L[clearscreenl]

1: check.key
Leave the procedure by pressing the <ESC> key.

If you want, you can make the turtle<hove forward
continuously and just use the L and r keys to change its
direction. To do this, you use the primitive keyq.

keyq returns the value ' true if a key has been struck
and lets you read the key’s value using key.

7.3



Simple Input! Output

The new procedures could look like this:
1: edit 'move

move
if keyq Lcheck.key keyl
forward 0.01

move

1: edit check.key
check.key :button

if :button 'L [left 101
if :button 'r Lright 101

o

Summary of Primitives

74

cursor
Returns position of cursor in form of list

key
Suspends calling process until key is struck and
returns key value

keyq
Returns ' true if key is struck but does not suspend
calling process

print
Prints text with list brackets

say

Prints text without list brackets
setcursor
Moves cursor to specific position
type
Prints text but does not send final carriage return



Arithmetic

Chapter 8
Arithmetic

Logo handles numbers in a variety of forms. It also
allows you to perform arithmetic operations in your
programs.

Positive and Negative Numbers

A Logo number consists of one or more numerals and it can
contain a minus sign (-). However, if you have a unary
minus that could be interpreted as a binary minus then it
must be appropriately bracketed. For example:

1: print add 10 —20

Logo can't do "add" in that command because '"add"
needs more inputs

1: print add —0 20

10

1: print add 20 (—10)

10

This does not apply inside a list. For example you can
use setpos [50 —501] and it will work.

Numbers can be separated from other items on a line by
using spaces:

1: say 200

200

1: say 100 —200
—100

Numbers can be integers or decimal numbers and they are
printed with a precision of up to 15 decimal places.

8.1



Arithmetic

Arithmetic Operators

8.2

The Logo arithmetic operators include:

*  multiply
[ divide

+ add

— subtract
T power

These are known as infix operators, because they appear in
between two numbers. For example:

1: say 10 * 3
30

Infix operators have equivalent prefix operators, which
appear in front of two numbers. For example:

1: say multiply 10 3
30

1: say divide 10 2

5

Infix operators are associated with the appropriate prefix
operators in the Reference part of this book.
Trigonometric primitives are also supplied. These include
sin (sine), cos (cosine), tan (tangent) and

atan (arctangent).

They take an input in degrees, for example

1: say sin 30
0.5

The transcendental functions Log, Ln,exp and sqt are
also included in Logo.



Arithmetic

int and frac are the two useful primitives that
separate integer and fractional parts of a number.
int chops the number off at the decimal point and
frac gives the part of the number chopped off.

Random Numbers

Logo is able to return a random integer number to you in
the range of 1 up to a number that you specify. This uses
the pi ck command: Logo picks an integer out from the
given range. For example:

1: repeat 20 [say pick 33]

will return a list of twenty integers chosen at random
from the range 1 to 33.

However, if you wanted a random number in the range 0 to 1

then use the random primitive. This returns a number
of fourteen decimal places.

Summary of Primitives

abs
Absolute value
acros
Arc cosine
add (+)
Addition
asin
Arc sine
atan
Arctangent (result in degrees)
cos
Cosine
divide (div, /)
Division

8.3



Arithmetic

8.4

exp
Exponential function
frac }
Fractional part
int
Integer value
Ln
Natural logarithm
Log

Logarithm to base 10
multiply (mul, #*)

Multiplication
pi

Returns the value pi
pick

Returns pseudo-random integer
power (1)

Raising one number to the power of another
random

Returns random fraction between 0 and 1
remainder (rem, %)

Returns remainder after a division
share (//)

Returns integer quotient after division
sin

Sine
sqt

Square root
subtract sub (-)

Subtraction
tan

Tangent



Words and Lists

Chapter 9
Words And Lists

Words

Text manipulation is one of the significant parts of
Logo. Text comes in the form of words and lists and you
can produce some very sophisticated programs using the
list-handling primitives. This chapter describes words
and lists, together with these primitives.

In spoken languages, a word is a group of letters which
conveys some idea. The concept of a word in Logo is
similar.

Logo words must be preceded by a quotation mark. For
example, the following are all words:

'cats
'rats
'r2d2
r12

1066

The quotation mark tells Logo that whatever follows is to
be treated as a word. Quotation marks in this position
are not regarded as part of the word and will not be
printed by say:

1: say 'cats
cats

You can break words into smaller words using the
primitives first, last, butfirst, restand
butlast.

9.1



Words and Lists

For example:

1: say first 'tortoise
t

1: say last 'tortoise
e

1: say rest 'tortoise
ortoise

You can also join (concatenate) words using join:

1: say join 'tortoise 'shell
tortoiseshell

join, like some of the other primitives, has an infix form
++. For example:

1: say 'tortoise ++ ‘'shell
tortoiseshell

If you type the following:

1: say butfirst 'x

this prints a word with no letters (called the

empty word). You can use the empty word in a command or
procedure by typing a quotation mark on its own. For
example:

1: say !

The following commands show how you can use the empty
word to stop a procedure from running:

1: build "tri.print

92



Words and Lists

tri.print 'letters

if :letters = ' [stopl]
say :letters

tri.print butfirst :letters

1: tri.print 'logo
Llogo

0go

go

o}

Lists

Logo’s ability to combine data into structures called

lists is very useful. A list consists of a number of

elements separated by spaces and surrounded by a pair of
square brackets. For example:

12 3 4 5]
[cats dogs hamsters]

The elements of a list can be words, as shown above

(notice that words do not need preceding quotes when used
in a list). They can also be numbers or other lists. For
example:

[[tortoiseshell tabby persianl
[labradoralsatianmongrell]

You can print the contents of a list using print and
say. say will strip off the outermost brackets,
print will not. For example:

1: print [kitchen dining.room stairs]
Lkitchen dining.room stairsl]

1: say [kitchen dining.room stairsl]
kitchen dining.room stairs

9.3



Getting Started

9.4

You can break lists into smaller lists or words using the
operators first, last, butfirst andbutlast.
For example, this command:

1: make 'house [[Lkitchen dining.room Lloungel
[stairs] [bedroombathrooml]

groups the rooms of a house into upstairs rooms,
downstairs rooms and the stairs. The following commands
isolate each of these groups.

1: print first :house
Lkitchen dining.room Lloungel

1: print last :house
[bedroom bathroom]

1: print butfirst butlast :house
Lstairs]

You can insert an element into a list using the primitives
putfirst and putlast:

1: print putfirst 'study L[kitchen dining.room
Loungel
[study kitchen dining.room Lloungel

1: print putlast [bedroom bathrooml
'shower.room

[bedroom bathroom shower.rooml

putfirst and put last have the infix forms +> and

<+ respectively. So another way of writing the two

examples above would be:

print 'study +> [kitchen dining.room Lloungel

print [bedroom bathrooml <+ 'shower.room



Words and Lists

amongq or memberqg will tell you if a list
contains a specified element:

1: say amongg 'study [study kitchen
dining.rooml] true

1: say amongq 'bathroom [study kitchen
dining.room] false

List Pointers
# 1s the list pointer. It enables you to look at a
particular element in a list or place an elementin a
list.
If you create a list pets for example:

1: make 'pets [dog fish cat hamster frogl

you might later on want to be reminded what the third
entry in the list is. This can be done by:

1: print :pets # 3
"cat

# also works for identifying elements of a list in a list,
such as a list of coordinate pairs for example:

1: make 'points [LO 01 [50 01 [50 501 CO 5011
1: print :points #1

[0 0]

1: print :points #2 #1

50

Now change an entry in the list of pets. If the
third entry should be spider then pets is amended by:

1: make 'pets #3 'spider

9.5



Words and Lists

This makes the updated list:
[dog fish spider hamster dogl

To amend the second entry in the list of coordinate pairs
you use # in a similar way.

1: make 'points #2 #1 32
The list points is now:

CCO 01 [32 0] [50 501 [0 5011

Other Operations on Words and Lists

9.6

RM Logo allows you to perform other operations upon words
and lists. For example:

® editlist willlet you edit a list in the edit window
and will return it in the form it was given in

® edlist willlet you edit a list in the edit window
and will return it as a list of lists

® count will return the number of elements in a word or
list

e emptyq will tell you if a variable contains the
empty word or the empty list

® explode will turn the contents of a word into a
list, each element of which is a letter or number of
the word

® implode will join the elements of a list into one word



Words and Lists

Summary of Primitives

amongqg (memberq)

Tests if an item is an element of a list
butfirst, rest (bf)

Returns all elements of a word or list other than the

first
butlast (bl)

Returns all elements of a word or list other than the

last
count

Returns the number of elements in a word or list
emptyqg (emq)

Tests for the empty list or empty word
eval

Evaluates the contents of a list
explode

Separates elements of word into list
first

Returns first element of word/list
implode

Joins elements of list into word
#

Returns nth element of list
join (++)

Joins two words or lists
Last

Returns last element of word/list
Lowercase (Llcase)

Changes text to lower case
putfirst (pf, +>)

Puts item as first element of list
putlast (pl, <+)

Puts item as last element of list
rest

Same asbutfirst
sentence (se, &&)

Joins two lists
uppercase (ucase)

Changes text to upper case

9.7



3 . e , m FE
|._€'.' = (]nmnn;f:nbbgmr ) ' ' o)
4 w0 nUbELERas (HCeRE) 3 g )
b Y Pl Geo [k
e Y FoULELCE (2™ g8y _
g : Z"W“WHWC
Y R T i
o | 7 BRI e IGFWt
q - m:rﬂc (D> 243 B nm‘
| IR Bt e T
iR BOE A (ELY W) NS
' ( o CCpauiice poxs [u;mm Fm U g,
ey | [OnGLeERe ([oNRE) [ SR
£ : -nnc. ' mwejmqmmqw . LTS |
‘|:__ 'I.}\ el Tt gards mmml,m ' s A
..'; : l.I‘I:-: ’ ;ﬂlu tH) ” .
r”i "I.: - l:i- gammmpﬂ{nﬁw(qm; T 3
' Jonn sisikoe oo EAn0 Motly L L L
{ 40 {m[ﬂ‘ o{' o o N } s
JP ‘lll}l ST iavee’ WWWNMQW . Py E{:
“\( ﬁ'.-: ' - aﬁn&mm&ca[wﬂqmm T |
o)} _sub;m _ Y
C% o e peaicgaogein || e
._L,:-.l'j 3 g_cmmr;ucmmﬂnmmhqu SR R
( ,._‘ '-bshﬂ tm) . 1 5 Ilu
o LI (16 LT e oL
9 SRR R o e e - T
"i( I I N LUl
s u«mmﬁiwmqs-mmmwm‘ s W
o PRETERE (BI) : e el
( " (e | R . [+ 1512 “ | L
{ LA . B‘m“"‘ E{CIDRINE QL A 0uy O 10 PRy o 1
‘1_,:. _ mmm‘ ASEr fPLYy wqﬂ 1 ;
( PR SR £ 3 TS pum % pra A A
[EFupsLd)

c:l Mﬁmﬂ : b

T. |_| |I |||_- "
=] piom



Organising Information

Chapter 10
Organising Information

Introduction

RM Logo allows you to build up a filing system, or
database, in the computer’s memory and use it to store
information in an ordered way: for example to hold names
and addresses.

The categories which allow you to build a database in
Logo are called properties. For example, you might have
aname 'rover with the property 'species and
'species could have the value dog. You can

associate these three items by using the assert primitive:

1: assert 'rover 'species 'dog

You could give a number of other names the property
'species' in a similar way:

1: assert 'whiskers 'species 'cat
1: assert 'patch 'species 'dog
1: assert 'joey 'species 'parrot
1: assert 'fido 'species 'dog

1: assert 'scotty 'species 'dog

You can now build up your filing system by giving a name a
number of other properties:

: assert 'rover 'breed 'labrador

1: assert 'rover 'colour 'golden

1: assert 'patch 'breed 'dalmatian

1: assert 'patch 'colour [black and whitel

10.1



Organising Information

If you want to, you can now examine the property values
using the primitives asserted and assertions.
asserted returns one property value of a name:

1: say asserted 'rover 'breed

Llabrador

1: say asserted 'patch 'breed

dalmatian

Up to now, you have set up a number of assertions which
p v,y e set up
you can picture as linked to each name:

dog
rover —— labrador

golden
You can get hold of all the property values of a name
(the categories it belongs in) using the primitive
assertions:

1: say assertions 'rover
[species dogl [breed labrador] [colour goldenl]

You can remove a property and its value using deny:

1:deny 'fido 'species
1:deny fido 'type

You can find out what names the database knows about by
using the objects primitive. For example:

1: say objects
might produce the following names:

Crover fido whiskers patch joey scottyl
10.2



Organising Information

A Simple Database

Let’s now develop a procedure del .props that will allow
you to delete all the properties of a name. The procedure
can find the list of property values using assertions

and then pass this list on to another procedure,
del.props.of. This in turn will work through the list and
use deny to delete each of the properties in turn.

A proceduredel.props is needed which will be called
as though you typed:

del.props 'rover

Another procedure,del .props.of is needed to be
called as though you typed:

del.props.of 'rover [[species dogl
[breed Labradorl] [colour goldenl]

Before doing anything else, de l .props.of should
ask whether the list of assertions is empty; if so, it can
stop. From this, it can be worked out that the first two
lines of del.props.of must be:

del.props.of :name :assns
if emptyg :assns [stopl

Otherwise, the first element (the property name) in the
first property pair of :assns needs to be looked

at. Specifically, this is species, and it is all that is
needed to deny the property pair.

The remaining properties can be deleted using

del.props.of again, with the rest of assns
as input.

10.3



Organising Information

The complete procedures are listed below:
1: build 'del.props

del.props 'name
del.props.of :name assertions :name

1: build del.props.of
del.props.of 'name 'assns

if emptyg :assns [stopl

deny :name first first :assns’

del.props.of :name rest :assns °

All you need do is callde L .props with the appropriate
name as input. For example:

1: del.props 'fido

will delete all properties and their values for the name
'fido.

Retrieving Information

10.4

Now that the rudiments of a database have been built up,
you can look at it in more interesting ways and manipulate
it. For example, you could find out which names have the
property 'species using the primitive ¢ Lassified:

1: print classified 'species
Lrover whiskers patch joey scottyl

It would be useful if you could also find out which of the
above names belong to the species 'dog. Lets develop a
procedure get.details to do this. The procedure

will be called as though you type something like the
following:

get.details 'species 'dog



Organising Information

It will first need to use c Lassified to get a list

of names which have the property species. It will then
pass on this list, together with the property value dog,
to a procedure scan. List.

scan. List should first look at the list and check that

it is not empty. If it is, then no names satisfy the
condition and scan. List can return the empty list as its
result. The procedures so far are as follows:

1: build 'get.details

get.details 'property 'propvalue
result scan.list classifield :property
:property :propvalue

1: build 'scan.list

scan.list 'names 'property 'propvalue
if emptyq :names [result []]

Now the first name can be looked up in the database using
asserted to find the property value:

asserted first :names :property

If the value of this is dog, it is included in the list
returned by scan. List as its result. The following
(incomplete) expression now exists:

if (asserted first :objects :property) = :propvalue
Cresultputfirst (first :names) scan.listrest
:names :property :propvaluel

If the property value isn’t one of interest, the name
needs to be ignored. However, there may be other names
in the list that are of interest.

10.5



Organising Information

So one last statement is added:

Cresult scan.list rest :names :prope'rty
:propvaluel

This is the final line of scan. List, and the procedures
are now as follows:

1: build 'get.details

get.details 'property 'propvalue
result scan.list classifield :property
:property :propvalue

1: build 'scan.list

scan.list 'names 'property 'propvalue

if emptyq :names [result T1]

if (asserted first :objects :property) =
:propvalue [result putfirst (first :names)
scan.list rest :names :property :propvaluel
[result scan.list rest :names :property
:propvaluel

Building a more Sophisticated Database

10.6

The rest of this section is about developing a database
containing names and details of people. Some procedures
will be introduced to help you to manipulate the database
in a more flexible way.

First think of categories of information (properties) you
might want to record for each person. It might include
their name, address, telephone number and interests. The
facilities already described allow you to create a

database containing this information and manipulate it in
a simple way. However, it would be useful if you could
input all of the properties for a given name at the same
time, instead of doing them one at a time using assert.



Words and Lists

The following procedure, create.props, will do this
for you:

1: build 'create.props

create.props :name :list

if :Llist = []1 [stopl

assert :name (first :list) (first rest :list)
create.props :=name rest rest :list

This is how you use it:

1: create.props 'John.Smith [address
[33TinPanAlley, Newtown] Telephone [0222 555551
interests [fishingboatingl]

1: create.props 'Jane.Jones [address
[Hawthorns, Billingsbrookel Telephone [0111 595551
interests [fishing swimming skiingll]

Notice how “telephone” has a one-to-one relationship with
the telephone number:

john.smith [0222 55555]
jane.jones [0111 59555]

“Interests” however, is a one-to-many relationship:

john.smith—— fishing
T —————boating

/‘fishing

swimming

T skiing

jane.jones

All of one person’s interests are stored as a single Logo
10.7



Organising Information

list.
This is equivalent to typing:

assert 'john.smith 'interests
[fishing boatingl

assert 'jane.jones 'interests
Lfishing swimming skiingl

To find out whether John Smith is interested in chess you
could use:

1: amongg 'chess asserted 'john.smith 'interests
Another question you might want to answer is “who is
interested in what?”, meaning who is interested in

fishing, swimming or skiing? The primitive objects is an
excellent starting point as it returns a list of every

object in the database. Try typing:

1: print objects

The following program scan allows you to find an answer
to the question “who has the property with this property
value(s)?”. For example:

1: say scan 'interests 'fishing

returns a list of those names whose property values
include fishing.

1: build 'scan

scan 'property 'value
result scan1 objects :property :value

10.8



Organising Information

1: build 'scani

scan 'objs 'property ‘'value

if emg :objs [result []1]

if assertedq first :objs :property &
amongq :value asserted first :objs
:property Lresult pf first :objs scan1
rest :objs :property :valuel

result scan1 rest :objs :property :value

Two other facilities would be useful to know:

® Adding items to property values (for example, to add
new interests in the example above

® Deleting several properties at the same
time

If you want to add items to property values, you can do so
using the following procedure:

build 'add.props

add.props 'name ‘property 'object

if not assertedg :name :property [assert :name
tproperty :object stopl

assert :name :property sentence (asserted :name
:property) (:object)

For example, the following command will add two new
interests to John Smith’s entry:

1: add.props 'John.Smith 'interests [skating mabell

You can delete several properties at once using the
following procedure:

10.9



Organising Information

1: build 'delete.props

delete.props 'name 'object

if :object = []1 [stopl

if wordg :object [deny :name :object stopl
deny :name first :object

delete.props :name butfirst :object

For example, the following will delete Jane Jone’s
telephone number and interests:

1: delete.props 'Jane.Jones [telephone interests]
You can then type in new ones using create.props.

There are many other ways in which you can improve upon
this database and its methods of access. For example, you
could try modifying check.props and scan. List to allow
you to search the database for people with two common
interests, instead of just one.

Reasoning by Inference

Think about this database:

assert 'Robin 'age 3
assert 'Robin 'is_a 'boy

1: assert 'Louise 'age 8
1: assert 'Louise 'is_a 'girl

1: assert 'boy 'state 'sticky
1: assert 'girl 'state 'clever
1: assert 'boy 'is_a 'person

1: assert 'girl 'is_a 'person

assert 'person 'wears 'clothes
assert 'person 'has 'legs

—
s W

10.10



Organising Information

It can be represented diagrammatically as follows:

PERSON 1,
ClLoTHES @ =205 ___@—"°°_» @ LEGS

7 N\

is.a is.a
BOY @ ® GIRL

/ state state \

is_a is_a
ROBIN @ ® LOUISE

L ] L ]
e .- g
3. o,

You can now write a procedure infer which will try to find
the value of a specific property for a given object. If

it can’t, it will use the property is_a to make an

inference, or deduction:

1: build 'infer

infer 'object 'property

if assertedq :object :property [result asserted
:object :propertyl

if assertedq :object 'is_a [result infer
(asserted :object 'is_a) :propertyl

For example:

1: say infer 'Louise 'age

8

1: say infer 'Robin 'state
sticky

1: say infer 'Louise 'has
Legs

1: say infer 'Robin '‘'wears
clothes

10.11


file:///state

Organising Information

The first line of infer tries to get the value of the
appropriate property for a given name. If it can’t, it
searches ‘backwards’ up the tree along the is_a property
route to try and find the property at a higher level.

Summary of Primitives

10.12

assert
Assigns a property value
asserted
Returns property value of a name
assertedq
Tests for existence of a property
assertions
Returns list of property pairs
classified
Returns list of names which have a given property
deny
Deletes a property and its value
objects
Returns a list of all the values that are associated
with properties



=t

File Handling

Chapter 11
File Handling

Disks and Files

Disks are one of the most versatile ways of storing
computer data. They are compact and can hold a large
amount of information which can be retrieved quickly and
easily. RM Nimbus can use 3.5-inch disks or winchester
disks as part of a standalone or network Nimbus.

Disk file storage is similar to the storage method used in
libraries. Each book in a library contains information
and it has an entry in a central index. This index is a

type of directory which tells you where to look for books.

You can think of disks as containing files which
correspond to the books in a library. Each file has a

name, usually one to eight letters, a dot and three

letters. Each file can hold information such as text,
programs and raw data. For each file there is an entry in

a directory which holds, for example, the filename and the
position of the file on the disk.

The analogy can be taken further. To find a book in the
library, you look at the index (directory) to find out
where the book is. You then take the book out, read its
contents and, finally, close it and put it back.

With a disk filing system, Logo would look at the disk
directory to see where the file is and to open it. Your
program would then read information from the file and,
finally, close it. The action of opening the file is like
looking in the library’s index.

When a librarian wants to put a new book into the library,
an entry is created for it in the index which puts the

11.1



File Handling

book into its correct position in the library. With disks,

the procedure is similar, but this time the actions are

carried out by your program and Logo. When your program
asks Logo to create a new file, Logo creates a new entry

for the file in the disk’s directory, specifying the

filename. Your program can then write records to the file
and close it.

A book can be put in the library, but no-one else will
know where it is until the library’s index has been
updated. Similarly with disk files, Logo will not know
where the file is on the disk until the file has been
written and closed, at which point the directory is
updated.

To summarise, a disk is organised into a number of files
and these are indexed by a short directory. When your
program creates, or makes, a file three things happen:
® anew directory entry for the file is created

® information is written to the file

® the file is closed

When your program reads a file, again three things happen:

® the file is opened (after looking in the directory to
find out where the file exists on the disk)

® information is read from the file

® the file is closed

The primitives involved in these actions are:
Opening files: infile outfile appfile
Closing files: closefile

Reading an item: readfiled, readfilec, readfilel
Writing an item: writefiled, writefilec, writefilel



File Handling

Creating a Simple File

Suppose you want to create a file which contains details
of the people in a company. You might want to store the
following lines as separate records, for example:

1 Taylor Judy 44
2 Maslin Roger 20
10 Smith Tina 20
11 Jenkins Tom 30
100 Watson Philip 30

The first entry on each line is the ‘personal number’, the
second the name, and the last entry, the age. You might
allocate a particular range of personal numbers for each
department.

For example:
Range  Department

1-9 Secretaries
10-100 Sales Staff
100-1000  Programmers

If you look at the entries shown, you will see that there

is a jump from personal number 2 to 10 and from 11 to 100.
This is to allow for the addition of staff at a later

date.

These entries can be written to a file using the program
write.names.to.file. Thisreads each line as

a list from the keyboard and writes it to a named disk
file until you press ~ followed by <ENTER>.


http://write.names.to.fi

File Handling

1: build 'write.names.to.file

write.names.to.file 'filename

unless outfile :filename Lsay
[cannot create filel escapel

unless (write.file :filename readlist) &
(closefile :filename) [say Lwriteerrorl
escapel

1: build 'write.file

write.file 'filename 'record

if :record = [*] L[result 'truel

unless writefiled :record :filename
Lresult 'falsel

result write.file :filename readlist

Let’s look at these procedures a little more closely.
write.names.to.file creates an output file

(using the primitive out fi Le) and you specify the name of
the output file as input towrite.names.to.file

itself. The procedurewrite.file is then

called to write the records to the file.

write.f1ile usesthe primitivewritefiled

to write each record to the file in the form of a data

item which you type in at the keyboard (using readlist).
writef1iled returns the value ' true if the operation
was successful and ' false if it was not. There are four
main reasons why it may not have been successful:

® The disk may be full (this corresponds to the shelves
being full in our library analogy)

® The directory may be full (this corresponds to a full
central index in the analogy)

® The disk may be protected via a write protect notch

® The disk is damaged


http://te.names.to.fi
http://te.names.to.fi
http://write.fi
http://'write.fi
http://write.fi
http://write.fi
http://te.names.to.fi
http://to.fi
http://te.fi

File Handling

write.f1ile isrecursive: it keeps running until you

type in ~ at the keyboard, at which point
write.names.to.file closes the file using the
primitive c Losef1i Le. closefi Le also

returns ' true if the operation was successful and ' false
if it was not.

You can run the program and write records to the file
names as follows:

: write.names.to.file 'names
1 CTaylor Judyl 44

2 [Maslin Rogerl] 20

10 CSmith Tinal 20

11 [Jenkins Toml 30

100 [Watson Philipl 30
-

0 1) ) rad ) ) =3

Reading a Simple File

If you now want to read data back from the file names and
print it on the screen, you can do so using the program
given below:

1: build 'read.names.from.file

read.names.from.file 'filename
unless infile :filename Lsay
[filedoes not exist] escapel
catch 'endfile L[readfile :filenamel
unless closefile :filename
[say [readerror] escapel

1: build 'readfile

readfile 'filename
forever [say readfiled :filenamel

The first command of read.names.from.file is
analogous to the first command of write.names.to.file

1.5


http://write.fi
http://write.names.to.fi
http://from.fi
http://rom.fi
http://firstcommandofread.names.from.fi
http://te.names.to.fi

File Handling

in that it opens a file for input (using infile).

The next command reads records from it using the procedure
readfi Le. Ignore the last command for the present

and look at readfi Le first.

readfi Le uses the primitive readfi Led to read

each record from the file in the form of a data item and
then prints it on your screen. readfi le runs
continuously until the end of the file is reached. When
this happens, readf i Led generates a throw 'endfile
and this is “caught” by thecatch 'endfile

in read.names.from.file. The fileis

then closed (using the primitive c Losef1i Le).

You can run this program and read back records from the
file names by typing:

1: read.names.from.file 'names
1 [Taylor Judyl &4

2 [Maslin Rogerl 20

10 [Smith Tinal 20

11 LJenkins Toml 30

100 [Watson Philipl 30

Changing Data in a File

You can change data in an existing file in three ways: you
can append data to it, you can delete data in it, or you
can replace existing data with new data.

Appending data to an existing file is simple: the method
is the same as for creating a new file, but instead of
using outf i Le to open the file you use the primitive
appfile.

The other two operations are a little more complex because
you can’t modify the existing file: instead, you must read

11.6


http://read.names.from.fi
http://rom.fi

File Handling

its contents and write them, selectively, to a new output
file. The delete operation first is looked at first.

If you want to delete records in an arbitrary way, you
would give a list of the numbers to be deleted as an input
todelete.records

1: build delete.records.from.file

delete.records.from.file 'filename 'deletions

unless outfile 'tempfile [say [cannot open
temporary filel escapel

unless infile :filename [say [cannot findl]
<+ :filenamel escapel

delete.records :filename :deletions (rfd
:filename)

unless closefile 'tempfile L[say Lcannot
close temporary filel escapel

unless closefile :filename [say [cannot
closel <+ :filenamel escapel

unless erasefile :filename [say [cannot
erase <+ :filenamel escapel

unless renamefile 'tempfile :filename [say
Lcannot rename temporary filel escapel

1: build 'delete.records

delete.records 'filename 'deletions 'record
if 'record = 'endfile [stopl
unless amongq first :record :deletions
Cunlesswritefiledata :record
:filename [say [write failed] escapell
delete.records :filename :deletions
(rfd :filename)

The last amendment to try is adding records to the file.
There are different ways to do this, but the most
efficient is to put the records in ascending order into a
new file and then to process this file against the input

file.


http://records.from.fi
http://from.fi

File Handling

Let’s call the file of additional records insertions,
the input file names, and create a procedure
add.records to read the two files and merge their
contents into one file in the correct order.

The procedure add. records would be called by:
1: add.records 'names 'insertions
The actual procedures would be:

1: build 'add.records

add.records 'insertions 'mainfile

unless outfile "tempfile Lsay L[cannot
create temporary filel escapel

unless infile :insertions [say [cannot
openl <+ :insertions escapel

unless infile :mainfile [say [cannot
openl] <+ :mainfile escapel

merge :insertions :mainfile (rfd
:insertions) (rfd :mainfile)

unless closefile :insertions & closefile
:mainfile [say [readerrorl]escapel

unless closefile 'tempfile [say [cannot
close temporary filel escapel

unless erasefile :mainfile [say [cannot
erasel <+ :mainfilel escapel

unless renamefile 'tempfile :mainfile [say
Ccannot rename temporary filel escapel



File Handling

1: build 'merge

merge 'insertions 'mainfile 'ins_record
'main_record

if :ins_record = 'endfile & :main_record =
'endfile [stopl]
if :ins_record = 'endfile | first :main-record

<first :ins_record

Lif wfd :main_record 'tempfile

[merge :insertions :mainfile :ins_record

(rfd :mainfile)] [say [write errorl] escapell

if :main_record = ‘'endfile | first
:main_record>first :ins_record
[ifwfd:ins_record "tempfile [merge
:insertions :mainfile (rfd :ins—record)
:main_record] [say [writeerror]escapell

say [personal number is duplicated: writing
new recordl]

if wfd :ins_record 'tempfile
Cmerge :insertions :mainfile (rfd :ins_record)
(rfd :main_record)] [say [write errorl escapel

A Few Last Words on Files

This chapter is intended to give you an introduction to
some of the Logo features. It has not covered all of the
primitives available for file handling; for example, you
can write characters to a file, instead of lists, and read
them back in the same way. The full range of file
handling facilities are covered in the list of primitives
at the end of this chapter.

The library file Listfile.def, provided on your

RM Logo disk, lists the contents of any file using the
primitive r‘ead‘h Lec.

11.9



File Handling

File Names

You identify a file using the file name and an extension
which describes the nature of the file, for example:
names. Lgd. You can also specify the disk drive code,

in which case you must follow it with a colon, for
example: a\:names.dat. The colon needs to be prefixed
with \ because it is a Logo special character.

The filename consists of one to eight alphanumeric
characters (A to Z and 0 to 9) but the first character
must be alphabetic.

The extension consists of three alphanumeric characters.
You can use any combination you want. These are usual in
RM Logo:

Lgc

Logo commands (to be read by consult or replay)
Lgd

Logo data

Lgo

Logo special (news file)

Lgp

Logo procedures

Lgx

Logo machine code extension

def

Logo procedures provided as library definitions

Using Temporary Files

11.10

The use of temporary files when amending a data file is
recommended!

In practice, you should not use temporary files with fixed
names. A better way to name them is to follow the
procedure whereby the latest copy of a file has the
extension dat for example, and the previous copy is kept
as backup, with the extension bak.



File Handling

When you process the file, your program takes the
following actions:

® [f the input file is called names .dat, call the
temporary file names . $$$

® At the end of processing the files, delete any file
called names .bak (backup files should always
have the extension bak as many text editors expect it)

® Next, rename names.dat tonames.bak,
thereby making the “old” file the backup file

® Finally, rename names.$$$ to names.dat

This means that you will need to be able to separate out
the filename and extension when you call a procedure
and the filename is given as input. For example:

1: write.names.to.file 'names.dat

In conclusion, you need these two procedures to allow you
to do this:

1: build 'file.name

file.name 'name

if emq :name | first :name = "'.
(result ') (result first :name ++
file.name rest :name)

1: build 'change.extension

change.extension 'original.name
'new.extension

result renamefile :original.name
(file.name :original.name) ++
:new.extension

11.11


http://te.names.to.fi

File Handling

You can now change the name of the file names.dat to
names.bak and return * true by typing:

1: change.extension 'names.dat '.bak

Sorting out Disk Problems

If, for example, you mess up your disk by taking it out of
the drive while Logo has a file open for writing, you can
sort out the problem using the MS-DOS utility chkdsk.

Please see the Nimbus Owners Handbook for details of this
utility.

Summary of Primitives

11.12

appfile

Opens current file for appending
closefile

Closes current file
consult

Replays commands from a file
directory

Returns directory information as list
dribble

Writes subsequent commands to a file
dribbleqg

Checks if command dribbling is on
erasefile

Erases a file
infile

Opens a file for input
infiles

Returns names of files open for input
nodribble

Turns off dribbling
outfile

Opens a file for output



File Handling

outfiles

Returns names of files open for output
readfilec, rfc

Reads a character from a disk file
readfiled, rfd

Reads a data item from a disk file
readfilel, rfl

Reads a list from a disk file
renamefile

Renames a file
replay

Replays a sequence of commands from a file
writefilec, wfc

Writes a character to a disk file
writefiled, wfd

Writes a data item to a disk file
writefilel, wfl

Writes a list to a disk file

11.13



PP bl i o i i A Sl SRl oo B et i 1 e Dl e

gl ; . I i
l
( J AU Y PRID T e . !
. RLIZELIFR[ Y ALY '
( "'3~ LGANGE Y ury HCuy [0 3 QR S
L S Weyseyi(eas Mg
AALCE S CUm 0RO ¥ YIRE g%
7 s Lyl reey Mo '
( wibjakz § wednnas bf SOMUVUGE (COIFY PG
LED{PA
Ve Frunmee y e
( LEUTRELI (6
v ETQY S (707 (A0 ¥ B g 3
i LEIQLITRI™ Wi
( =G U Gy e (L0 i e e

. Lesgy) feg™ Lia

L h s e Im"‘ b LR
LOowd ) (&0 L4t
guuuuu wu{mﬂmgumubm

A Sl



Error Handling and Debugging

Chapter 12
Error Handling and Debugging

The first section of this chapter describes how to handle
errors, both within your programs and from command mode.
The second section describes what to do when your programs
don’t work.

Error Handling
Handling Keyboard Mistakes

When Logo can’t do what you want it to, it prints a
message on your screen. Try typing the following, for
example:

1: print ad 1 2

Logo can't do "ad" in that command
because '"ad" does not exist

1:

If you spot an error before you press <ENTER>
you can correct it by using <BACKSPACE>.

Other keys which will help you when inputting from the
keyboard are summarised as follows:

12.1



Error Handling and Debugging

124

<CTRL/G>
Erase everything on line

<CTRL/R>
Repeat last line input

<LEFT>
Move cursor one character left

<RIGHT>
Move cursor one character right

<TAB>
Move cursor right by one word

<SHIFT/TAB>
Move cursor left by one word

<F1>
Move cursor to start of command

<F2>
Move cursor to end of command

<F3>
Erase word to left of cursor

<F4>
Erase word to right of cursor

<F5>
Erase everything to left of cursor

<Fé6>
Erase everything to right of cursor

<DEL>
Erase character under cursor

<BACKSPACE>
Erase character to left of cursor




Error Handling and Debugging

Handling Errors in your Program

The catch and throw primitives let you trap errors
in your programs. They can be used to trap events other
than errors — such as the end of a file.

catch will run a list of instructions. If throw
is called during the execution of these instructions, Logo
returns control to the catch statement.

Look at the following procedures, for example. They print
the squares of any number which you type.

1: build 'print.squares

print.squares

catch 'finish [forever [do.square ask
[please type a numberll]

print.squares ; continue if 'finish is thrown

1: build 'do.square

do.square 'text

unless count :text = 1 & numberg first :text
[say [please typeonedigitl] throw 'finishl

say first :text * first :text

If you type something other than a number, the procedure
do.square prints a warning message then returns
control toprint.squares after the catch statement.
The process then continues.

Debugging Your Programs
A program which does not work is said to have a bug in it.

The process of finding and removing bugs is called
debugging.

123



Error Handling and Debugging

12.4

You can tell when a program doesn’t work in two ways: when
you run the program, Logo may print an error message, or
the program may not do what you expected.

The first action you can take is one of prevention. You
can reduce the number of potential bugs in a program by
designing it as a number of procedures, each of which is
so small that it is unlikely to contain more than one bug.
Each procedure can then be tested separately.

If problems still exist, the next thing to do is look at

the program carefully. You can often ‘squash’ a bug by
sitting down with a pencil and a listing of the program,
and working out carefully what is going on inside the
computer. You can get a listing of the program on paper
by using the copy command, for example:

1: copy 'face

will print out the procedure face. You might need to

type face first however! It is listed on the following -.
page. You can display the program on the screen by using
printout (or po) command or the edit command.

For example:

1: po 'face
1: edit 'face \

Following an edit command, the procedure appears in the
“window” for editing, and you can change it as described
in Chapter 4. The editing keys are summarised around the
edit window remember.

Normally, edit, po and copy will tell you all you

need to know to correct a program fault, but occasionally
you may need Logo’s special debugging tools. These are
thewalk, trace andbug commands, and symbolic
dumps, and they are described in the rest of this Chapter.



Error Handling and Debugging

Using wa Lk

The most useful and powerful debugging tool is the
command wa Lk. Imagine that you’ve written a program
called face, and it doesn’t work exactly as you want

it to. You really need to study it line by line as the
program runs. Here is the program face:

1: build 'face

face

arcr 50 360
rt 90 Lift

fd 20 drop

fd 20 Lift

fd 20 drop

fd 20 Lift

bk 30

rt 90 drop

fd 30

Now type the command:
1: walk 'face

Nothing happens, but Logo will remember that the program
face is to be “walked” not “run” when you type its name.

As face uses the graphics screen, remember to type cs
and then type:

1: face

Logo replies by typing the first line of the program, like
this:

arcr 50 360...7

12.5



Error Handling and Debugging

You can do one of four things now:

Press <ENTER>

Tells Logo that you want to run only this line of the
program. Logo carries out thearcr 50 360 command.
Afterwards, it will print the next line, and wait for
another response from you.

Press <ESC>
Tells Logo to stop immediately and return the 1: prompt.

Press <F9>

Tells Logo to run through the rest of the procedure. When
the procedure finishes, or invokes another, Logo starts
walking again. After finishing, the program will be
walked if you run it again.

Press <F10>

This tells Logo to stop walking and to run until the
program stops or hits an error. After finishing, the
program will be walked if you run it again.

You may also give wa Lk a list of program names, like this:
1: walk [face arms Llegsl]

To undo the effect of wa Lk, you use unwa Lk:

1: unwalk 'face

Now face will run!

Using trace

For programs that do a calculation, the trace command
may be more useful. It is used like the wa Lk command:

1: trace 'faceor1: trace [face arms Llegsl

and its effect is cancelled using the untrace command.
12.6



Error Handling and Debugging

When the program face is now run, you will get a message
each time it starts and each time it finishes. When it
starts you get this message:

face was called...?
and when it finishes, you get this message:
face finished without a result

trace is useful with programs that do a calculation.

For example, imagine that you wrote a program called sum
which is supposed to return the sum of all the numbers
held in a Logo list ' x.

1: build 'sum

sum 'list
if emq :list L[result 0]
result add first :list sum :list

1: make 'x [1 2 3 4 5]

The expected result is 15. However, try sum and you'll

find that you need to use the <ESC> key to stop the
inaction. The message Panic: No nodes Lleft

might appear on the screen but don’t panic — there isn’t
anything wrong. Logo has detected a never-ending program.

To find out where sum is at fault, use the trace
command. In this example, sum is obviously the culprit
since you are not calling any other programs. However,
sometimes you will be running a main program that calls
two or three subroutines, and you can then trace any, or
all, suspect subroutines at the same time.

12.7



Error Handling and Debugging

If you issue the following two commands:

1: trace 'sum
1: print sum :x

Logo replies:

sum was called with these inputs
'List = [1 2 3 4 5]...7

sum was called in this Line of '"sum"
result add first :list sum :list

with these inputs

'list = [1 2 3 4 5]...7

In this example, the list is printed out by trace.

You will find that the message is repeated on screen and
the list is not reducing as might be expected. The line

of the procedure that action is sticking at is:

result add first :list sum :list

After a closer look, you might realise that it ought to be:
result add first :list sum butfirst :list

Press the <ESC> key and then amend sum.

Using bug

12.8

A third tool is bug. If you want to be notified every
time the variable called x changes, type:

1: bug 'x
Then, when you type

1: make 'x 5

Logo acknowledges it with: x B 2



Error Handling and Debugging

As with trace and wa Lk, you can give bug a list

of variable names. bug and trace will also tell you which
line of which program was running:

A variable must exist before you can bug it. If you
haven’t created a variable, then bug fails. This means
that inside a program that uses the new instruction, you
will have to insert bug like this:

new 'x
bug 'x

To undo the effect of bug, use the unbug command.
Symbolic Dumps

A symbolic dump will print the current values of all
global variables. Type:

1: dump
You can stop a symbolic dump by pressing <ESC>.

dump is provided as a library procedure on your RM Logo

disk.
Summary of Primitives
bug
Prints message when contents of variable changes
error

Returns data about last error
grievance

Returns text of latest error message
moan

Reproduces the last error
trace

Gives message when procedure is used

12.9



Error Handling and Debugging

walk

Prints lines before execution
unbug

Cancels effect of bug
untrace

Cancels effect of trace
unwalk

Cancels effect of walk

12.10

™

Mt



Parallel Processing

Chapter 13
Parallel Processing

Introduction

You can quite often split a problem into a number of
smaller problems, and solve them separately. This
approach is very useful in programming and it makes
debugging programs a lot easier.

RM Logo allows you to take this approach a step further.
In some cases procedures can be run independently of one
another. RM Logo allows you to treat such procedures as
separate parallel processes and run them all at the

same time.

The significance of the 1: prompt should become apparent.
When a process is created, it is given a process number.
Whenever the keyboard is communicating with that process,
the process number is included in the prompt. Thus, if

you are ‘talking’ to process 3, the prompt will become:

3

When you are not using more than one process, you are
talking to process 1. Hence the normal 1: prompt.

To see how parallel processes work, try a simple example.
First, build the following procedure:

1: build 'spin.square

spin.square
forever [square Lt 43]

Carefully type the following sequence of instructions and
watch what happens:

13.1



Parallel Processing

13.2

1: spin.square <ENTER>

(press <CTRL/X>)

2:tell 2 setx =50 forever [square Lt 311 <ENTER>
(press <CTRL/X>)

3:say 5 + 6 * 7

47

The first line you type runs the procedure spin.square

as process 1. When you press <CTRL/X> this allows you to
create and run process 2. Once process two is running,

the third process can be run: it merely performs a
calculation.

You can use the next procedure in the same way:
1: build 'count_up

count_up 'no 'position
setcursor :position

say :no

count_up :no + 1 :position

This moves the cursor to a given position and counts up
from a given number. You can set two counters going at
once with the commands:

1: count_up 1 [5 201
(press <CTRL/X>)
2: count_up 100 [5 301

To stop both processes, press <ESC>.

If you run more than two processes in parallel, or if the
initiation sequences are complicated, this method of
running becomes tedious.

If this happens, you can use RM Logo’s paral lel primitive.
This runs a number of other processes in parallel and
suspends the current process until they all stop. For
example, you could set 3 counters going as follows:



s

Parallel Processing

1: parallel [Ccount_up 1 [5 2011 [count_up
100 [5 3011 Lcount_up 1000 L5 40111

Sometimes begin is more appropriate thanparal lel.
begin starts a new process which runs concurrently with
the existing processes.

When using parallel processes, you should remember that a
parallel process does not inherit turtles from the process
which started it. So the following will cause an error:
begin [forward 501

You can get round such a problem by using:

begin [tell 1 forward 501

Problems With Parallel Processing

When two or more processes interact, problems of mutual
exclusion and synchronization can occur. These are
problems of timing and each is described in the following
sections.

Mutual Exclusion

The need for mutual exclusion is illustrated by the
following piece of code which has two processes adding
elements to the end of a list.

1: make 'x [1]

1: parallel [Lrepeat 10 [make 'x putlast
:x 'allLlrepeat 10 [make 'x putlast
:x 'b 111

You might expect the end product to be a list with 20
elements; however, fewer than 20 are left in it. This is
because both processes try to expand the list at the same
time and overwrite each other.

13.3



Parallel Processing

mutual exclusion is needed to ensure that only

one process can access the list at any time: the
single primitive gives us this facility. To see how it
works, first of all, define the following procedure:

1: 'build add_to_Llist

add_to_list 'data
single

make 'x putlast :x :data
multiple

Now type the following:

1: make 'x [1]
1: parallel [[Crepeat 10 [add-to_Llist 'all
[repeat 10 Cadd_to_Llist 'bl1]

The procedure add_to_Llist updates the list and the
command singLe tells RM Logo that no other process can run
while it is doing this. So you now end up with all 20

elements in the list. Logo reverts to the default state,

where several processes can access one procedure, when the
primitivemultiple is used.

Synchronization

13.4

The second problem of parallel processing is one of
synchronization between processes. When parallel
processes are running, there are times when one process
cannot continue until a specific event has taken place.
The process must indicate that it is waiting for the event
or that the event has taken place, so that other processes
can continue.

Suppose, for example, you have a global variable x which
is initially set to 0, and two processes, counter1 and
counter2, access it. counter1 adds one to x

until x is 100, prints the message [x is 1001 and then
waits until counter? finishes and then sets x to 0.



Parallel Processing

The procedures can be defined as follows:
1: build 'counteri

counteri

make 'x :x + 1

if :x = 100 [say [x is 100] await :x = 0]
counteri

1: build 'counter?

counter?

await :x = 100
make 'y 1y + 1
say :y

make 'x O
counter?

In each procedure, the primitive awai t is used to stop
each process until a specific event occurs.

Now run the procedures by typing the following;:

1: make 'x O

1: make 'y O
1: counter1
(press <CTRL/X>)
2: counter?

Synchonization is also important when two procedures are
accessing the same list: for example add.to. list

is adding data to the list and take.from.list

is extracting data from it.

At some instant the list looks like the following:
[p onmlLl

Ifadd.to.list requests to add 'k to the list
(makingitCp o n m L kl)andtake.from.list

13.5



Parallel Processing

requests to delete 'p from the list (making it
Lo n m L3), thereisa possibility of errors
occurring while amending the list.

Mutual exclusion is needed to ensure that add.to. list
and take.from. list are not accessing the list at
exactly the same time. However, the two processes also
need to be synchronized so that, when the list is empty,
take.from. Llist must wait until

add.to. list hasadded an item to the list.

The two procedures are:

1: build 'add.to.list

add.to.list ‘'data.item

single

make 'datalist putlast :datalist :data.item
multiple

1: build 'take.from.list

take.from.list 'var.name

single

if emptyg :datalist [multiple result 'falsel
make :var.name first :datalist

make 'datalist rest :datalist

multiple

result 'true

Problems with Local Variables )

13.6

A parallel process does not inherit local variables from
the process which started it off. Hence: )

1: build '"my.program

my.prog ‘'x
begin [print :x1]

will either print the global variable : x or crash, since



Parallel Processing

:x has no value in the new process. The following example
shows how you can get around this:

1: build 'each

each 'action 'group
begin putlast putlast [each.dol :action :group

1: build 'each.do

each.do 'action 'group

if emptyq :group [stopl
tell first :group

run :action

each.do :action rest :group

Using these procedures, the following line will change the
colour of four turtles to red but will not change the
number of the turtle that process 1 is talking to:

1: each [Lt pick 90 fd pick 501 [William
Henry Douglas Fred]

A further subtle problem emerges when you want to allot
one command to each turtle, rather than giving a single
process to act on each turtle in turn. You might want to
do this if the process was going to be time consuming,.

The previous procedure could be rewritten as:

each 'action 'group

if emg :group [stopl

begin pl pl [each_dol :action first :group
each :actionrest :group

each_do 'action 'name

tell :name

run :action

This will fail with the mystifying error “William does not
exist”. Yet you know William does!

13.7



Parallel Processing

The mistake happens because each each_do receives the
unquoted word Wi LLliam. first yields ‘William,
butputlast strips the quote off again and

begin attempts to execute:

begin [each_do [setc 10] Williaml

There are two possible remedies. One is to put quote in
the list as:

each [setc 101 ['William 'Henry 'Douglas 'Fredl]

The other is to join a quote onto each element as it is
extracted from the list, so changing line 2 of each to:

begin pl pl [each_do] :action join "' first :group

Example of Parallel Processing

The file cage.def on your RM Logo disk is a simulation
of the lift example in Paul Chung’s research paper 243,
showing an example of synchronization with a ‘bounded’

buffer.

* P.W.H. Chung. Concurrent Logo: a language for teaching
model applications; DAI Research Paper 243, Oct 1984;
in Logo Almanack 1, Part 2. )

13.8



Parallel Processing

Summary of Primitives

await

Suspends process until a condition is ' true
begin

Runs command at same time as calling process
multiple

Turns parallel processing on
parallel

Suspends calling process and runs list of commands
single

Turns off parallel processing
whenever

When condition is true, Logo runs a given command

13.9



..wngmm. 4
II gt Iumoghmmlmnmﬂ R AL
_Wur rﬂ?"'h‘mﬁwmulbrm vz i b
. s nu N, .
| qwm.l"'
‘ TRy

J_lehl»
huoccami
AL xmmmm 3 .amtumz
Fﬁw i
| ummﬂ el
zmhu!plum o
mcmqmuup Wk
.:w Rt U




—

Multiple Turtles

Chapter 14
Using Multiple Turtles

RM Logo allows you to have up to eight turtles on your
screen at any time. You can use them to make the drawing
of several complex shapes simultaneously or to build up
moving pictures. This chapter explains how to do both
these things.

Drawing Complex Shapes Simultaneously
The following procedure spin.square draws twelve
“spinning squares” at the centre of your screen using the
procedure square:

1: build 'square

square
repeat 4 [fd 30 Lt 901

1: build 'spin.square

spin.square
repeat 12 [lt 30 squarel

Up to now, if you had wanted to draw a spinning square in
each corner of the screen and one at the centre, you would
have had to draw them one at a time. However, using the
RM Logo multiple turtle feature you can have them drawn
simultaneously.

Type in the following procedure for example, and try it
out:

14.1



Multiple Turtles

14.2

1: build 'smoother.squares

smoother.squares

tell 1

tell 2 setpos [—50 501
tell 3 setpos [50 501
tell 4 setpos [—50 —501]
tell 5 setpos [50 —501
tell [1 2 3 4 5]
spin.square

The tell command “selects” zero or more turtles by name
or number and applies subsequent commands to them until
you use another te Ll L command. A new turtle is created at
the centre of the drawing area whenever you use te Ll
followed by a name or number of a turtle not yet known to
Logo.

The sixth te Ll is slightly different. It addresses all
five turtles and applies subsequent commands to all five
at the same time. Try it and see.

Turtles can be addressed by name, instead of by number, if
you wish. You can remove them from the list of active
turtles with the primitive vanish.

Each turtle can take on a different shape, a different
colour and a different pen colour. For example, change
smoother.squares to the following and try it again:

1: edit 'smoother.squares

smoother.squares

tell 1 setc 1 setpc 1

tell 2 setpos [—50 50] setc 2 setpc 6
tell 3 setpos [50 501 setc 3 setpc 7
tell 4 setpos [50 —50] setc 4 setpc 8
tell 5 setpos [50 —50] setc 5 setpc 9
tell [1 2 3 4 5]

spin.square



Multiple Turtles

Each turtle can also take on its own speed and direction
of motion.

Drawing Different Shapes Simultaneously

The method described above is very effective if all the
shapes you want to draw are the same. If they are not,
the resulting program is not very elegant.

When you want to draw different shapes at the same time,
the most effective method is to use parallel processes.

For example, suppose you want to draw a spinning square at
each corner of the screen and a “spinning triangle” at the
centre. You could do it with the following additional
procedures:

1: build 'picture

picture

tell 1 setc 1 setpc 1

tell 2 setpos [50 50] setc 2 setpc 2
tell 3 setpos [50 50] setc 2 setpc 2
tell 4 setpos [-50 —50] setc 2 setpc 2
tell 5 setpos [50 —50] setc 2 setpc 2
parallel [Lcorners] [middlell

1: build 'corners
corners

tell [2 3 4 5]
spin.square

1: build 'middle
middle

tell 1
spin.triangle

14.3



Multiple Turtles

1: build 'spin.triangle

spin.triangle
repeat 12 [rt 30 trianglel

1: build 'triangle

triangle
repeat 3 [fd 50 Lt 1201

picture creates all of the turtles and defines their
colours and positions. It then starts two separate
processes (corners and midd Le) in parallel, which
draw the spinning squares and triangle independently of
one another.

Creating Moving Pictures

14.4

One of the more interesting ways of using multiple turtles
is to create a moving picture, like that shown (without
motion!) below.

-l

The picture consists of the earth, sky, a tree, moving
birds and a cloud which moves from left to right. The
easiest way to build such a picture is to program each of
its parts as a separate procedure and then call them all
from one controlling procedure.



Multiple Turtles

For example:
1: build 'scene

scene
cs tell 1

cloud.shape
bird.shapes
create.earth.and.sky
create.tree
create.birds.and.fly
create.cloud.and.move

By doing it in this way, an error in one part of the scene
will not affect the rest of the program. If you are

working in a group, it also means that each person or sub-
group can design, build and debug one part of the program.

Let’s look at the stationary parts of the scene first: the
earth, sky and tree. The earth and sky are easy; all we
need do is draw the “horizon” on the screen then fill the
areas below and above it with colour. The following
procedure will do this:

1: build 'create.earth.and.sky

create.earth.and.sky
setpc 4

setpos [—160 —501]
seth 90

forward 320

setpos [0 =701]

fill 0 0

The instruction before the fi LL command is there because

you must move the turtle within the area before you can
fi LU it with colour.

14.5



Multiple Turtles

Now, the tree can be drawn using the following procedures:
1: build 'create.tree

create.tree

setpc 6

setpos [—50 —501
seth 0

forward 25
canopy

backward 25
1: build 'canopy

canopy
left 60

repeat 6 L[bough right 201
bough

Left 60

1: build 'bough

forward 7
twig
forward 7
twig
forward 5
backward 20

1: build 'twig

twig

Lleft 45
forward 5
backward 5
right 90
forward 5
backward 5
Left 45

14.6



Multiple Turtles

The birds require a little more thought. First create
four bird shapes:

1 2 3 q

\J\,_//,_H\/\

1: build 'bird.shapes

bird.shapes

dsh [bird1 [0 01 Lift [—10 61 [—8 41 [—6 21
001 [621C841L10611

dsh [bird2 [0 01 Lift [—10 21 [—8 11 [0 01
C811[10211]

dsh [bird3 [0 0] Llift [—10 —4] [8 2]
[—6—11L[001C6—11C8—2]1[10—41]
dsh [bird4 [0 01 Lift [—10 —81 [-8 —51]
[—6—31[00] [6—31L[8—5]1[10—81]

Position the turtles:
1: build 'create.birds.and.fly

create.birds.and.fly
tell 2

setpos [50 5017

setc 3

tell 3

setpos [100 701
setc 3

To change the screen turtles to moving bird shapes, create
the procedure f Lly.

14.7



Multiple Turtles

1: build 'fly

fly 'speed

setshape 'bird1 pause :speed
setshape 'bird2 pause :speed
setshape 'bird3 pause :speed
setshape 'bird4 pause :speed
setshape 'bird3 pause :speed
setshape 'bird2 pause :speed
fly :speed

T e
(NS AU I 8 ]

1: build 'pause

pause 'n
Llocal 'x
repeat int :n [make 'x :nl]

A similar method is used to create a cloud.
1: build 'cloud.shape

¢ loud.shape

dsh [cloud [0 0] Lift [—30 —20]1 [=32 -15]
[—28—-81[—350] [—2051 [—15 151 [—18 8]
L0251 5201 C15201C2051 251013051
[25—101 [15—20] [5—25]1 [0—20]1 [-5-201]
[—20-35] [-30—20111]

Having created a cloud shaped turtle and called it * c Loud,
a final procedure is needed to move it across the screen.

1: build 'create.cloud.and.move

create.cloud.and.move

tell 1

sety 70

setshape 'cloud

setdir 90

setspeed 15

begin L[tell 2 fly 20] begin L[tell 3 fly 301

14.8



Multiple Turtles

The picture building procedures are now complete and you
can run them via the procedure scene.

Summary of Primitives

defineshape, dsh

Specifies the shape of the turtle
dir

Returns direction of movement
hideturtle, ht

Hides turtle shape

near
Tells you if turtle is close to another turtle
nosense
Cancels sense command
setc
Changes turtle colour
setdir
Specifies the direction the turtle moves
sense
Turtle senses presence of another turtle or change in
background colour
setshape
Changes current turtle shape
setspeed
Gives turtle a constant speed
shape

Returns current turtle shape
shapedef

Returns shape as a list
shapes

Returns list of defined turtle shapes
showturtle, st

Makes turtle visible
speed

Returns turtle’s current speed
tell

Applies subsequent commands to named turtles

14.9



Multiple Turtles

told

Returns name of current turtle
toldqg

Returns true if a turtle is obeying graphics commands
touch

Returns the background colour under the pen
vanish

Removes turtle from list of active turtles

14.10



Logo Microworlds

Chapter 15
Setting Up A Logo Microworld

You may want to restrict the facilities that Logo offers,
or extend them in some way, to produce a Logo learning
environment, or microworld. You could:
® Redefine some of the primitives to change their
effect. For example, you could redefine forward
so that forward 10 moves the turtle by 50 steps,
instead of 10.
® Change the colours used at start up.

® Treat some of your procedures as ‘primitives’ which
cannot be edited by users.

® Rename primitives for use with other languages.

® Create a news file to be displayed whenever someone
starts up the system.

Suppose, for example, you want to create a turtle graphics
microworld for young children such that:

® f meansforward 50
® b meansback 50
® | means left 50
® r meansright 50

You would first create the proceduresf, b, Landr as
follows:

15.1



Logo Microworlds

1: build 'f
f
forward 50

1: build 'b

b

backward 50
1: build 'r
r

right 50

1: build 'L

L
left 50

Now when you type f and press <ENTER> for example, it
will have the same effect as:

forward 50

However, other users are still able to edit the new
procedures, rename them or even delete them. If you want
to stop them from doing this you should type:

12 bury [f b r L]

This ‘buries’ the named procedures in your workspace so
that they now look like primitives. You can ‘unbury’ or
‘expose’ them at any time by typing:

1: expose [f b r L]

Suppose you now want to introduce children to the normal
primitives forward and backward, together with
the idea of inputs, but you want to redefine their range

15.2



Logo Microworlds

such that forward 10 and backward 10 both give
movements of 20 steps.

First edit f andb to take an inputdistance and to
multiply it by two. As forward and backward

are to be hidden, a special prefix $ is used to

distinguish between Logo’s original version of forward and
the modified version. f and b become:

1: edit 'f

f 'distance
$forward (:distance * 2)

1: edit 'b

b 'distance
$backward (:distance * 2)

Now type:

1: aljas 'f 'forward

1: alias 'f 'fd

1: alias 'b 'backward

1: alias 'b 'bk

1: bury [f b forward fd backward bkl]

This buries the new procedures as well as the original
definitions of forward and backward.

The commands:

1: expose [f b forward fd backward bkl
1: scrap [backward bk forward fdl

will cancel the aliasing and return forward, fd,
bk and backward to their usual use.

15.3



Logo Microworlds

You could use a similar approach to rename the basic
movement primitives for other languages. For example,
the following instructions allow the German words for the
primitives forward, backward, left and

right to be recognised.

: alias 'forward 'vorwaerts
alias 'backward 'rueckwaerts
alias 'left 'links

alias 'right 'rechts

— ol
ax =n awm

Preserving The Microworld

15.4

Ideally, your microworld should exist when Logo is loaded.
The events which occur when Logo starts are shown in the
diagram below:

start

|

print news file

|

execute command file

|

the 1: prompt

The news file is named news . Lgo and it allows
information to be passed to users at the start of each
‘session’. This information can be anything you want:
instructions on how to use the microworld or school news,
for example.

Now look at how you can create the turtle graphics
microworld described earlier. All you need do is make a
text file containing something like the following:



Logo Microworlds

define [L[f] [forward 5011]
define [[b]l [backwards 5011
define [LCL] [left 5011
define L[Lrl L[right 5011
bury [f b L rl

If the file containing the above is called turtle. Lgc then
it will be loaded if you start Logo with the MS-DOS
command:

Logo turtle.lgc

rather than just Logo. This will then create the
proceduresf, b, L andr and make them appear as primitives
while Logo is running. If you want to use the standard
start-up file as well then add the line:

consult 'start.lgc

to the file turtle. Lgc.

The file start. Lgc contains the following:

® the filing primitives load, save, get, keep

® procedures giving the colour numbers by name

® the procedure copy which sends definitions of
procedures to the standard MS-DOS printer channel 'prn.

® the procedure pos which returns a list of the current
turtle’s x and y coordinates

® the procedure f1ind which takes two inputs. The first
is an object and the second a list. find returns a
list pointing to the occurences of object in the list.

® the procedure toldq which takes an input 'name and
returns * true if :name is a turtle being addressed by
the current process, and ' false otherwise.

15.5



Logo Microworlds

® the definitions of the shapes train, coach, car,
bicycle

® the procedure dump which prints out the contents of
all global variables.

Any of these files, including news . Lgo and start. lgc
can be edited outside Logo using a text editor.

You can also use Logo’s editor to change them. First
type:

1: load 'editfile.def

and then type editfi Le and the name of the file to
edit. For example:

1: editfile 'start.lgc
You can also use the Logo editor outside Logo. To do this

type proword and the name of the file to be edited after
the MS-DOS drive prompt.

Summary of Primitives

15.6

alias
Allows another name to refer to a procedure. The new
name may be the name of a primitive.
bury
Buries procedures so that they cannot be edited,
listed, saved, renamed or deleted
define
Defines a procedure in the form of a list
expose
Unburies procedures
rename

Renames a procedure (not a primitive)



Extensions to Logo

Chapter 16
Writing Extensions To Logo

Introduction

This chapter is about extending Logo to communicate with
devices beyond the control of the standard language.

An extension is a short machine code program which will

let you do this. For example, a floor turtle is a small

robot which trundles around the floor in response to Logo
commands. You will need to load an extension into RM Logo
if you want to drive a turtle with Logo commands given at
the keyboard. This is called a turtle driver. Anyone can

load a driver if it is ready-made, but you may want to

write your own. You will also need to write your own
extension to use Logo to control a device you’ve made
yourself.

Following a general description of floor turtles, the
first sections of this chapter explain how to load a ready
made turtle and other extensions.

The requirements and explanations to prepare and write
your own turtle driver or extensions are given in the
remaining sections of the chapter.

Floor Turtles

A floor turtle is a small robot which responds to the Logo
commands forward, backward, left and right.

It also has a pen which responds to Lift anddrop. It
sometimes has other features like a hooter, flashing
lights, or touch sensitive switches.

16.1



Extensions to Logo

With young children it is often very helpful to introduce
the floor turtle before going on to the screen turtles.

To do this, you need to add a program which can convert
information about the primitive being run on Nimbus
(forward, backward and the number given as

argument) into motor movements. This program is called a
turtle driver.

If you are using one of the common commercially sold
turtles, Research Machines may have supplied a driver for
it. If you are building your own turtle or using one for
which you can’t get a ready-made driver, you will have to
write it yourself.

Loading a Ready-made Turtle Driver

16.2

Give the command:
driver ‘'abcd.lgx

This will unload any driver that is loaded already, and
load the file ABCD.LGX as a driver. To load the driver
without loading another, use the command nodriver.
It has no inputs.

While a driver is loaded the commands forward,
backward Left,right, lLift anddrop
communicate with the floor turtle as well as with any
screen turtles. If you run both screen turtles and a
floor turtle at the same time, then the floor turtle will
move before the screen turtles. It also becomes legal to
give these commands without first giving any
clearscreen or tel L commands.



Extensions to Logo

Loading Ready-made Extensions

An extension is a short machine code program which lets
you send signals to, and receive signals from, a feature
of Nimbus which Logo cannot reach in its standard form.

Thebload (Binary LOAD) command takes a word
or a list as input, so:

1: bload 'abcd.lgx
loads the procedures defined in the extension abed. Lgx.
1: bload [abcd.lgx efgh.lgxl

loads the procedures defined in the extension files
abcd. lgx and efgh. Lgx.

You may have a number of extensions in Logo at the same
time. To delete an extension give the command:

1: unbload 'abcd.Llgx
To find out the names of the procedures that the
extensions define (which may not be the same as the

filenames) give the command:

1: say bloaded

Preparing to Write your own Turtle Driver or Extensions

To write a driver or extension you will need to
understand:

® the way the 80186 chip works
® an assembly language

® an editor, an assembler and the
MS-DOS utilities LINK and EXE2BIN.

16.3



Extensions to Logo

The steps in writing a machine code extension are:

1. Use an editor to create the source file, for
example: ABCD.ASM

2. Use an assembler to create an object file, for
example: A:MASM ABCD

3. Use LINK to convert the object file into
MS-DOS’s load file format, for example: A:LINK ABCD

4. Use EXE2BIN to convert the file to binary format,
for example: A:EXE2BIN ABCD

5. Ithas mnemonic value to rename the file, for example:
REN ABCD.BIN TILLY.LGX

The file TILLY.LGX is now ready to be loaded into Logo.

If you want to invoke the floor turtle driver, load the

two registers that the floor turtle routines checks first

(AX and BX) and issue interrupt 0D4. If your floor turtle
routine is likely to use registers SI or DI and you are
treating them as reserved, then you must preserve them.
Remember that floor turtle function codes run from 0 to 7
inclusive; yours should start at, say, 16 to allow a

little room for RM functions to expand.

Writing a Floor Turtle Driver

16.4

The driver or extension should be a binary file in the
form of a far procedure, ending with a far return
instruction. The segment registers are all reserved. If
you are calling the floor turtle from an extension
procedure then registers SI and DI may also be reserved.
An error exit is made by issuing the INT D2 hex
instruction.



Extensions to Logo

When the driver is invoked, the BX register is set to

a function number and the AX register to the value of
the input, if there is one; be warned that this may be
negative.

The significance of the number in BX is:

0. Turtle driver is about to be unloaded. Turn off
lights etc.

1. Turtle driver was just loaded. Turn on lights etc.
Forward command. Distance in AX

Backward command. Distance in AX

Bowo

Left command. Angle in degrees in AX
5. Right command. Angle in degrees in AX
6. Penup

7. Pen down

Writing Your Own Extensions

Extensions are very flexible; they can accept one or more
numbers, words or lists as input and they can return a
result which may also be a number, word or list. There is
a restriction that neither input nor output lists may
contain sublists, and input and output numbers must be
integers in the range —32,768 to 32,767. They can invoke
the turtle driver, if one is loaded, or the Logo error
handling routine.

16.5



Extensions to Logo

Format of Extension Files

16.6

Your extension should be a binary file in the form of a
far procedure, ending with a far return instruction.

Before the code itself, there must be a header giving the
name of every primitive in the extension. The names
should be made of contiguous lower case characters; the
name must be terminated with a null byte.

Immediately following this there should be one byte giving
the arity (number of inputs) of the procedure, and
following that two bytes giving the offset from the start

of the extension to the start of the code for the

primitive. The entire header should be terminated with a
null byte.

For example:

db "mouse' ; name
db 0 ; terminates name
db 0 ; has no inputs

dw offset offset of code start

e

db 'button'

db 0

db 1 ; has one input

dw offset dobutton

db 0 ; terminates header
is a valid header for an extension defining the primitives

mouse and but ton, where mouse has no input and
button has one.



Extensions to Logo

Reading Inputs

If you want to read inputs then you must not disturb the
DI register until you have read all the inputs you want.
It’s your responsibility to make sure the number of inputs
you read is not greater than the arity declared in the

header.

To read an input invoke interrupt 0D0 hex. This will

alter the content of the DI, AX and BX registers. Leave
DI alone. The BX register contains type information to
allow you to make sense of the AX register, as follows:

BX AX means

2 = Input is a list.
(See below for how to scan it)

0 N N is a number

1 SSSS ES:AX is a null-terminated string of
characters; the input was a word.

To scan a list invoke interrupt OD1 hex before invoking
interrupt 0DO again. The BX and AX registers will give
you the first, or next, element of the list as follows:

BX AX means

2 - Element is a sublist. It cannot be
read but it can be stepped over with
another interrupt 0C1.

0 N Number, as above
1 SSSS String, as above
= - End of list

16.7



Extensions to Logo

Returning Results

Even if your extension does not return a result you should
be careful what is in the BX register when you return from
your procedure with a far return instruction. It is
interpreted as follows:

BX (on exit) result

0 or any number Your primitive does not return a result
not shown here

1 The number in AX

2 The word formed from the null-terminated
character string at DS:AX

3 The word 'false if AX is zero and the
word 'true otherwise
4 A list built up as explained below
Returning Lists

To return a list, first clear the SI register and issue
interrupt 0D3. The Sl register is reserved from now on.
The procedure will now return an empty list if you put 4
in BX and return. To append elements to the list load AX
and BX as for exit (BX will always be 1, 2 or 3) and issue
another interupt 0D3. To end the list, put 4 in BX and
return with a far return instruction.

Error Exit

16.8

If you encounter an error, for example someone using your
extension has supplied an inappropriate input, then use
MS-DOS function 9 (put string) to display a message if
you want, then invoke interrupt 0D2. This is the Logo
error exit. It can be caught with catch 'error

though this will not suppress the message.



RM Logo

Part 2 Reference

Logo Primitives
The following pages describe the Logo primitives in
alphabetical order, one to a page. The primitive # is the
final primitive to be described.
Most descriptions include an example of how to use the
primitive. Remember that an indented Logo line indicates
that it is a continuation of the line above.

Logo Keywords and Signals
The Logo keywords:
case, default, until, true, false

are listed following the special characters.

The Logo signals (things Logo catches) are explained
following the Logo keywords. The signals are:

cancel, endfile, error, fence,
touch, touchturtle, escape

catch and throw primitives make use of these
signals to change the flow of control. See Chapter § in
the Concepts Section of this book.

Special Logo Characters
The special Logo characters:

g =L 1 " ()N, 4+ =/ P ~8S #F<><1L &

are documented at the end of the Logo primitives.

Reference.i



RM Logo

Inputs to Logo Primitives

Where inputs are rcqulrcd these are shown in italics.
For example:

add number number
first nwl

The words used to define these inputs are as follows:

a,b
angle

filename

list

integer
number
nwl

word

An expression which is ' true or 'false
An angle specified in degrees

A quoted word identifying a file unambiguously
and including any file extension.

One or more nwls enclosed by square brackets, or
the empty list [

An integer number

A number, integer or fraction

A number, word or list

A quoted word: any set of alphanumeric or non-
special characters preceded by '. Special characters
must be prefixed with\.

In a few instances, an unquoted word may also be
accepted. These are not detailed explicitly in this

book and their use is discouraged in order to keep
words in the same form.

Any of the above definitions can be replaced by an
expression or procedure, if the replacement returns an
equivalent result.

Reference.ii



abs number

Remarks

RM Logo

Returns the absolute value of the input (including a zero

if the input is zero).
Examples

1: print abs —2
2
1: print abs 2
2

Reference.1



RM Logo

acos number

Remarks

Returns the arccosine of number as an angle in the range
180 to 0.

Examples
1: print acos —1
180
1: print acos 0.5
60
1: print acos 1
0

Associated Primitives

asin, atan

Reference.2



add number number
+

Remarks

Returns the sum of its inputs.

Examples

1: say add 10 2
12

1: say 10 + 2
12

1: make 'x 8
1: say add :x 1
9

RM Logo

Reference.3



RM Logo

alias wordl word?2

Remarks

Gives the procedure named by word1, a new name word2.
The original name will still be understood. Any editing on
word2 will change word1 also.

This is the only way to re-use the name of a primitive.

If word1 is the name of a primitive then calls to word2
will actually invoke word1.

Example

alias 'six.sided.figure ‘'hexagon

Reference.4



RM Logo

amongq nwl list
memberq

Remarks

Returns the value " true if mwl is an element of list,
otherwise it returns ' false. Differences between upper
and lower case are ignored.

Examples

1: say amongqg 'dog [cat dog hamster rabbit]
true

1: say memberqg 'pig [cat dog hamster rabbitl]
false

The following example tests if the contents of list1 area
subset of List2:

1: build 'subsetqg

subsetq 'list1 'list2

if emg :list1 Lresult 'truel

if amongqg first :list1 :list2
Cresult subsetqrest :list1:Llist2]
Cresult 'falsel

Hence:
1: print subsetq [toast jaml[ toast eggs jaml
"true

1: print subsetq [toast jam]Lcheese toast eggsl]
'false

Reference.§



RM Logo

and

Remarks

Commands connected by and are run in sequence. and is
optional.

Example

1: repeat 4 [forward 50 and left 901

Reference.6



RM Logo

appfile filename

Remarks

Tells Logo to open the file filename for writing. The
current contents of the file are preserved and new data is
appended to the end of it. Returns ' true if the file is
opened successfully and ' false if it is not.

If you try to append to a non-existent file, a new file
will be created.

Example

The following command tries to open the filedatafi Lle as
an ‘append file’. If it manages to do this the program
continues, otherwise it prints the message ‘unable to open
append file’ and stops.

unless appfile 'datafile [say [unable to open
append filel escapel

Associated Primitives

closefile, outfile, infile

Reference.7



RM Logo

arcl number angle

Remarks
The turtle draws an arc to the left. number
specifies the radius of the arc, angle is its size in
degrees.
If the radius is negative, the centre of the arc is to the
right of the turtle. If the angle is negative, the turtle
moves backwards instead of forwards.

Example

To draw a semi-circle of radius 25 steps to the left:

1: c¢s
1: arcl 25 180

Associated Primitive

arcr

Reference.8



RM Logo

arcr number angle

Remarks

The turtle draws an arc to the right. number specifies
the radius of the arc, angle is its size in degrees.

If the radius is negative, the centre of the arc is to the
left of the turtle. If the angle is negative, the turtle
moves backwards instead of forwards.

Example

To draw a circle of radius 25 steps to the right:

1: ¢cs arcr 25 360

° 4

Associated Primitive

arcl

Reference.9



RM Logo

asin number

Remarks

Returns the arctangent of number as an angle in the range
=90 to 90 degrees.

Examples

1: print asin —1
—90

1: print asin 0O

Associated Primitives

acos, atan

Reference.10



RM Logo

ask nwl

Remarks
Prints #wl on the screen without outer brackets but with a
question mark. Everthing that is typed from the keyboard
in response is returned as a list. The response is ended
by <ENTER>. The <ENTER> is not recognized as
part of the response.

Example

1: make 'name ask [What is your namel
What is your name? Cathy

1: print :name
[Cathyl

Associated Primitives

key, keyq, readlist

Reference.11


http://Reference.il

RM Logo

assert wordl word2 nwl

Remarks

Gives word1 the property word2 with value nwl.
Examples

1: assert 'whiskers 'species 'cat

1: assert 'patch 'species 'dog

1: assert 'patch 'colour [black and whitel

Associated Primitives

asserted, assertedq, assertions, classified,
deny, objects

Reference.12



RM Logo

asserted wordl word2

Remarks

Returns the value held by the property word2 of the object
word1.

Example
1: assert 'rover 'breed 'labrador
1: say asserted 'rover 'breed
Labrador

Associated Primitives

assert, assertedq, assertions, classified,
deny, objects

Reference.13



RM Logo

assertedq word1 word2

Remarks

Returns ' true if the object word1 has the property word2
and returns ' false otherwise.

Example

assertedq can be used to anticipate errors when you are
about to use asserted

1: assert 'GWR 'abbreviation.of [great
westernrailwayl
1: print assertedq 'GWR ‘'abbreviation.of
"true
Associated Primitives

assert, asserted, assertions, classified,
deny, objects

Reference. 14



RM Logo

assertions word

Remarks
Returns a list consisting of one or more sub-lists. Each
sub-list consists of a property of the object word,
together with its associated value.

Example

1: say assertions 'rover
[species dogl [breed labradorl [colour goldenl

Associated Primitives

assert, asserted, assertedq, classified,
deny, objects

Reference.15



RM Logo

atan number

Remarks

Returns the arctangent of number as an angle between —90
and 90 degrees.

Examples

1: say atan 1
45

1: say atan 0.5
26.565051177078

Reference.16



RM Logo

await a

Remarks

The process which issued the awai t will be suspended until
the expression @ becomes true. If @ uses a global

variable, await can be used by a process to delay another.
If a is a procedure, it will be run at least once.

Examples

Suppose 'x is a global variable, initially set to 0. Two
processes, counter1 and counter2, access it. counter1
adds 1 to 'x until "x is 100, prints a message and then
waits until process?2 does its work resetting ' x to 0.

1: build 'counteri

counteri

make 'x :x + 1

if :x = 100 [say [x is 100] await :x
counter

01

1: build 'counter?2

counter?
await :x
make 'y :
say :y
make 'x 0
counter2

~ |l
—
+C3
-

1: make 'x O
1: make 'y O
1: parallel [Lcounter1llcounter2l]

Associated Primitives
begin, parallel, whenever, single, multiple

Reference.17



RM Logo

backward number

bk

Remarks

Moves the turtle number steps backwards. If the turtle’s
pen is down, the turtle leaves a trace of its path. If
number has a negative value, the turtle will move
forwards.

Example

1: cs
1: backward 50

Associated Primitive

forward

Reference.18



RM Logo

begin list

Remarks
The command /ist is run in parallel with the current
process. It is usually used to start another process off
from within an existing process.
Example
begin [tell 5 repeat & [forward 50 Lleft 901
Associated Primitives

parallel, run

Reference.19



RM Logo

bg

Remarks
Returns the current background colour, which will always be
a number in the range 0 to 15. The colour numbers are
listed under the primitive co lour.

Examples

say bg

O =

sethg 2
cs
say bg

1
1
1
2
Associated Primitive

setbg

Reference.20



RM Logo

bload filename

Remarks
Loads the extension in filename into Logo’s workspace.
The procedures in this extension then become accessible
from Logo.

Example
1: bload 'control.lgx

Associated Primitives

bloaded, unbload

Reference.21



RM Logo

bloaded

Remarks

Returns a list of procedures defined by any extensions
currently loaded.

Example

1: print bloaded
[peek poke epsonl

Associated Primitives

bload, unbload

Reference.22



RM Logo

botha b
&

Remarks

Returns ' true if both the expressions @ and b are ' true,
and 'false otherwise.

The table below shows how both works for different values

of gand b.

a b bothab
"false "false "false
'false "true 'false
"true 'false 'false
"true "true "true

both does not evaluate its 2nd input if the Istis "false.
Examples

1: say both (1 = 1) (2 = 2)
true

1: say both (1 = 2) (2
false

2)

1: say (1 = 2) & (2 = 2)

false

The following example procedure tests for integer square
roots and avoids a failure if the input is negative:

1: build 'has_exact_square_root

has_exact_square_root 'n
result (:n>=0) & (sgt :n = int sqt :n)

Reference.23



RM Logo

branch a list case b list

Remarks

This statement is a set of condition and list pairs. The
conditions are called cases.

Logo looks to find the first case that is true. The list
following that case is run and the branch statement is
then finished. If a result is returned from the [ist then
it is the result of the branch statement.

If the final case is the keyword default and none of the
other cases proved true, then the final expression will be
evaluated and run.

Example
1: build 'sign
sign 'x
branch :x>0 L[result 'positivel case :x=0

[result 'zerol
default [result 'negativel

Reference.24



RM Logo

bug w!
bug list

Remarks
Whenever the value stored in the named variable(s) changes,
Logo print a message. word or every variable named in the
list must exist before you use bug.

Example
1: bug 'name
1: bug [dog catl

Associated Primitive

unbug

Reference.25



RM Logo

build word

Remarks

Invokes the editor. If word already exists then the
definition appears in the edit window: otherwise only

word appears. It is an error to leave the editor and
return only the word.

Please see chapter 4 for more details.

Example
If you wanted to create the procedure square, you would
type:
1: build 'square

and the edit window would appear:

FKEYS ||4LR® | AUDY # COMMANDS %

normal char | line |[Swap case [menu

shift word | page || Ins marker of

alt tine | text | Go to mark mare]

square

Associated Primitive

edit

Reference.26



RM Logo

bury wl

Remarks
Allows you to ‘bury’ procedures in the workspace so that
they cannot be listed, edited, saved, renamed or deleted.
The buried procedures will then have the appearance of
primitives.

Examples

The following example lists the names of all procedures in
the workspace then buries some of them.

1: say titles
square triangle rhombus hexagon

1: bury [square triangle hexagonl

1: say titles
rhombus

Associated Primitive

expose

Reference.27



RM Logo

butfirst nwl
bf

rest

Remarks

Returns all but the first element of nwl, which can be
a number, word or list.

nwl cannot be empty.
Examples

1: say butfirst 'cats
ats

1: say rest [tortoiseshell cats are greatl]
cats are great

Associated Primitives

butlast, first, Llast

Reference.28



RM Logo

butlast nw!

bl

Remarks

Returns all but the last element of nwl, which can be a
number, word or list.

nwl cannot be empty.
Examples

1: say butlast 'cats
cat

1: say butlast [tortoiseshell cats are greatl]
tortoiseshell cats are

Associated Primitives

first, last, butfirst, butlast

Reference.29



RM Logo

catch word list

Remarks

The expression list is evaluated and run. If a throw
command with the label word occurs while running list,
control returns immediately to the command following
catch.

catch word list > list

. l \ i:hrow word

Please see the section “Throwing and Catching Control’
in Chapter 5.

The system throws several signals which can be caught by

catch. These are thrown by cancel, . endfile,

escape, error, touch, andtouchturtle.

word can be one of the system names, such aserror.
Example

catch 'trouble L[explorel

If explore, or anything it calls, contains the command

throw 'trouble, then no furtherlines of explore are run.

Instead, Logo continues with the command following catch.

Associated Primitive

throw

Reference.30



RM Logo

centre
center
ct

Remarks
The turtle is moved to its ‘home’ position. This is at
the centre of the screen and facing upwards (a heading of
0).

When a process issues a centre command, only the turtles
addressed by that process are affected.

Reference.31



RM Logo

classified word

Remarks

Returns a list of objects which have the property word.
Example

1: print classified 'species

Lrover whiskers patch fido joeyl
Associated Primitives

assert, asserted, assertedq, assertions,
deny, objects

Reference.32



RM Logo

clean
cl

Remarks

Everything except the turtle shapes disappears from the
screen. The turtle shapes are not moved.

cs

forward 50
left 90
forward 50
cl

— ol o —
aE s sR EE mR

ﬁ §

Reference.33



RM Logo

cleantext
ctx

Remarks

Erases all text on the screen, returning the cursor to
the top left of the text area. This will not affect the
graphics area if you are in graphics mode.

graphics mode text mode

Reference.34



RM Logo

clearscreen
cs

Remarks

This clears the screen ready for drawing with a turtle.
The bottom six lines are for text; the remainder of the
screen is the drawing area. Everything on the screen other
than the turtle disappears.

When a process issues a c Learscreen command, only the
turtles addressed by that process are moved to the centre
of the screen.

If cLlearscreen is used for the first time, only one turtle
appears. It’s name is seymour and is turtle number one.

Examples
1: forward 50
1: left 90
1: c¢s

Reference.35



RM Logo

closefile filename

Remarks
Tells Logo to tidy the file filename and close it.
Returns ' true if the file was closed successfully and
'false otherwise.
Examples
The following line tries to close a file. If it manages
to do this, it prints 'end of run', otherwise, it prints:
'unable to close output file' and stops.

1: if closefile 'outfile.dat [say [end of runl]
[say [unable to close output filel stopl

Associated Primitives

appfile, infile, outfile

Reference.36



colour
color

Remarks

RM Logo

Returns the colour of the turtle as a number 0 to 15. The

numbers associated with the colours are:

Number

o S T S S G Y
nNbWh=OOCwe~I0 Ui b WN=O

Example

14
1:
3

setc 3
say colour

Associated Primitive

setc

Colour

black
dark.blue
dark.red
purple
dark.green
dark.cyan
brown
light.grey
dark.grey
light.blue
light.red
magenta
light.green
cyan
yellow
white

Reference.37



RM Logo

consult filename

Remarks
Executes commands previously written (dribbled) to the file
filename. The commands are not visible on the screen as
Logo executes them.Control returns to the keyboard when
either an error occurs or the end of the file is reached.

The file can be created from Logo usingdribbLe or file
primitives, and from outside Logo using a text editor.

Example
1: consult 'turtles1
Associated Primitives

dribble, nodribble, replay

Reference.38



RM Logo

cos angle

Remarks
Returns the cosine of angle. angle is in degrees.
Example

1: say cos 60
0.5

Reference.39



RM Logo

count nwl

Remarks

Returns a number as its result:

® [f the input is a number, count returns the
number of digits to the left of the decimal point

® If the input is a word, count returns the
number of characters in the word

® If the input is a list, count returns the
number of elements in the list

Examples
: say count 12.223
: say count 'jeeves

: say count [nhumber of words in Listl]

The following example deletes an element of a list using
count to check the value input:

1: build 'deletes.item

deletes.item 'n 'list

if :n > count :list [say [n is too bigl escapel

if :n = 1 LCresult rest :Llistl]

result putfirst first :list delete.item :n—1
rest : list

Hence:

1: print delete.item 3 [the cat sat on the matl
Lthe cat on the matl

1: print delete.item 8 [the cat sat on the matl
n is too big.

Reference.40



RM Logo

cursor

Remarks

Returns a list of two numbers which are the screen line and
column number of the cursor position.

Example

1: print cursor
[20 161

Associated Primitive

setcursor

Reference.41



RM Logo

define /ist

Remarks

Defines a procedure in the form of a list. Each line of
the procedure is an element of lisz.

The first element is the title line of the defined

procedure. If there is no procedure with this name, a new
one will be created. If this is already the name of a
procedure, the new definition will replace the existing
one.

Example
The following command defines a procedure which draws a
house shape. It uses two other procedures which draw a

square and a triangle.

1: define [[LChouse 'sidel Lright 901
[square :sidel [left 601 [triangle :sidell

Associated Primitive

text

Reference.42



RM Logo

defineshape /ist
dsh

Remarks

Defines a turtle shape in the form of a list. The first
element of /ist is the name of the shape; other elements
are the coordinates of the vertices of the shape. These
vertices are joined to form the shape. Use Lift if you
require a break in the line of the turtle shape.

The turtle will rotate about its centre. The centre of
the new turtle shape is always the centre of the previous
turtle shape.

Examples
1: dsh [box [—8 —81[—8 81[8 81[8 —81[—8 —811]

1: defineshape [cross [—10 =101L[10 101
Lift [—0 101C10 —0311

1: setshape ‘'box

1: setshape 'cross

Although neither example contains [0 0], each turtle will
rotate about its centre.

Reference.43



RM Logo

deny wordl word?2

Remarks

Deletes the property word2 and its value for the object
wordl.

Examples

1: deny 'fido 'species
1: deny 'fido 'type

Associated Primitives

assert, asserted, assertedq, assertions,
classified, objects

Reference.44



RM Logo
dir

Remarks

Returns the direction in which the turtle is moving (its
movement beading, not its drawing heading).

Examples

1: clearscreen
12 tell 1
1: setdir 45

: say dir

teLL is not necessary here if you already have a turtle.
However, if you haven’t, the setdir command will cause an
error. If you set a negative direction, di r will give you

the positive equivalent. For example:

1: setdir —45

1: say dir

315
Associated Primitive

setdir

Reference.45



RM Logo

directory word

Remarks
Returns directory information from the disk in the form of
a Logo list. word is used to select the information
required and depends upon the operating system.

Example

Under MS-DOS the following command will return a
list of all files on disk B with the extension .LGP

1: say directory 'buw.lgp

Note how the \ character is used to tell Logo to interpret
the following character as normal text.

Reference.46



RM Logo

divide number number
div
/

Remarks

Returns the number that results from dividing the first
input by the second.

Examples
1: say divide 13 2
6.5

1: say 12 / 2

6

Reference. 47



RM Logo

do list until a

Remarks

The command /ist is repeated until the expression a
becomes 'true. listis carried out at least once.

Examples
1: do [forward 100 left 901 until keyq \
The following procedures find the first prime number after
the number input. It a§sumes that the number inputis a
prime number.
1: build 'find.first.prime.after
find.first.prime.after 'n
do [make 'n :n+1] until primeqg :n
result :n

1: build 'primeq

primegq 'n
result primeg.sub 2 sqt :n :n

1: build 'primeqg.sub
primeg.sub 'i 'j 'n
branch rem :n :i =0 [result 'falsel

case :1>:j Lresult "truel
default Cresult is.prime.sub:i+1:j :nl]

Reference.48


http://ind.fi
http://ind.fi

RM Logo

dribble filename

Remarks

Subsequent commands will be written (dribbled) to the file
filename.

dribble is mainly used when you need a record of
everything typed. Hence, the file is opened in append
mode, preserving any existing contents.

Example
1: dribble 'session

Associated Primitives

consult, dribbleq, nodribble, replay

Reference.49



RM Logo

dribbleq

Remarks

Returns * true if everything you type is being recorded in
a dribble file, otherwise it returns ' false.

Example
1: if dribbleq [say [hello I am watching youll]
Associated Primitives

consult, dribble, nodribble, replay

Reference.50



RM Logo

driver word

Remarks
Loads a floor turtle driver contained in the file
specified by word providing that such a driver exists.
There can only be one floor turtle driver present in Logo
at any one time.
Please see chapter 16 for details.

Associated Primitive

nodriver

Reference.51



RM Logo

drop

Remarks

Replaces the turtle’s pen on the paper so that it draws as
it moves. This primitive is the opposite of Lift.

Examples

The following procedure draws a dotted line:

1: build 'dotted.line

dotted.line 'length ‘'dot.size 'pen.state

if :dot.size >:length [fd :length stopl

fd :dot.size

if :pen.state [lLiftlLdropl

dotted.line :length —:dot.size :dot.size
not :pen.state

Hence:

1: drop
1: dotted.line 50 8 'true

Associated Primitives

Lift, upg

Reference.52



edit word

Remarks

RM Logo

Invokes the editor and places the definition of word into
the edit window. It is not possible to edit a procedure

or primitive which does not exist. edit cannot be used to
create a procedure or primitive (use bui Ld).

Example

If the procedure square exists and you type:

1: edit

'square

then the procedure appears in the edit window.

FREYS

4LAF | AUDY

H COMMANDS *

normal
shift

alt

line text || Go to mark maore]

char | line | Swap case [menu

word | page || Ins marker of

square

repeat 4 [right 90 forward 501

Associated Primitive

build

Reference.53



RM Logo

editlist [ist

Remarks
Displays the elements of list in the edit window. The
list is not broken down into sub-lists (as it is using
edlist). Once in the edit window, the elements of the
list can be edited like any other text.
On leaving the editor, the list is returned in the same
form it took before going into the editor — except for any
amendments made in the editor.

Associated Primitive

edlist

Reference.54



RM Logo

edlist /ist

Remarks
Displays the elements of list in the edit window. Once in
the edit window, the elements of list can be edited like
any other text. Outer brackets are not displayed.

When you exit the editor with <ESC>, edlist returns a
list of Lists. Each of the lists represents one line of
the edit window.

On exiting the editor with <F10> and <A>, edlist doesa
throw cancel. If this is not caught then any editing you
have done will be ignored.

Example
1: build 'wp
wp 'text

catch 'cancel [make :text edlist
if valueqg:text [value :text]1[[1]1]

1: wp 'story

This is a simple word processor! If story exists you can
change its content. If it doesn’t exist thened list is
called with an empty window. If you cancel the edit, no
assignment is made to story.

Associated Primitive

editlist

Reference.55



RM Logo

eequalq nwl1 nwi2
eeq

Remarks

Returns 'true if nwll and nwi2 are exactly equal and
'false otherwise.

® Two numbers are considered exactly equal if they
differ by 1/2000000 or less.

® Words are considered equal only if they contain the
same letters in the same order and in the same case.

® Lists are considered equal if their elements are
exactly equal and in the same order.

If nwll and nwl2 are of different types the result will
always be 'false.

Examples

1: say eequalqg 1 2
false

1: say eeqq 1 1
true

1: say 'HOUSE == ‘'house
false

Associated Primitive

equalg

Reference.56



RM Logo

either a b

Remarks

Returns ' true if either or both its inputs are true and
'false otherwise (the ‘inclusive OR’ function).

The table below shows how it works for different values of

aandb.

a b eitherab
'false 'false 'false
'false "true "true
"true 'false "true
"true 'true "true

If the first input is ' true the second is not evaluated.

Example

The following procedure is useful when you want to check
whether a user has typed a yes or no answer:

1: build 'verify.answer

verify.answer :x
result either :x ='yes :x ='no

Associated Primitives

not, xor

Reference.57



RM Logo

emptyq nwl
emq

Remarks

Returns 'true if its input is the empty word (") or the
empty list ([]) and ' false otherwise. Numbers are never

empty.
Examples

1: say emptyg 'fred

'false

1: say emptyg '

'true

1: say emg [Tom Joel
'false

1: say emg bf bf L[Tom Joel
"true

emptyq is often used to test whether recursion can
continue. For example:

1: build 'sum

sum :numbers

if emg :numbers [result 0]

result add first :numbers sum rest :numbers

Hence:

1: print sum [100 20 3]
123

Reference.58



RM Logo

end

Remarks

Used in parallel processing. end terminates only the
process which executes it.

Please see chapter 13.
Associated Primitives

await, begin, parallel, whenever

Reference.59



RM Logo

equalq nwll nwi2
€qq

Remarks

Returns 'true if mwll and nwi2 are equal and *false
otherwise.

e Two numbers are considered equal if they differ by
1/2000000 or less

® Words are considered equal if they contain the same
letters in the same order, irrespective of case

® Lists are considered equal if their elements are equal
and in the same order.

If mwll and mwi2 are of different types the result will
always be 'false.

Examples

1: say equalg 1 2

false

1: say equalg 1 1

true

1: say equalq 'HOUSE 'house

true

1: say equalg [Oxford Londonl [Oxford Durhaml
false

Associated Primitives

eequalqg

Reference.60



RM Logo

erasefile filename

Remarks

Deletes the file filename from disk. Returns ' true if the
file was deleted, otherwise it returns ' false,

Example

unless erasefile 'junk.dat [say
[can/'t delete filell

Reference.61



RM Logo

escape

Remarks

Stops all processes (unlike end which stops only the
invoking process).

Associated Primitives

end, stop

Reference.62



RM Logo

eval list

Remarks
Treats the contents of list as a set of Logo expressions.
Logo returns a list composed of the values of each

expression.

If the list contains a procedure which does not return a
result, an error is returned.

Examples

1: print eval [2+2 72 8/4]
[4 5 2]

1: make 'x [here is the news]
1: print eval [first :x rest :x]
Lhere [is the news]]

Reference.63



RM Logo

exp number

Remarks

Calculates the exponential function. exp returns e raised
to the power of number.

Examples

1: say exp 4
54.5981500331442

1: print Ln exp 5
5

Reference.64



RM Logo

explode word

Remarks

Returns a list made up out of the characters contained by
word.

Example

1: print explode 'slough
[s L oug hl

Associated Primitive

implode

Reference.65



RM Logo

expose nwl

Remarks

Allows you to recover or ‘unbury’ procedures from the
workspace. It is the opposite of bury.

Primitives such as forward are buried, by default, when
Logo is loaded and cannot be exposed. expose only allows
you to get at procedures that have been buried.

Examples
1: say titles
rhombus
1: expose [square triangle hexagonl]
1: say titles
rhombus square triangle hexagon
Associated Primitive

bury

Reference.66



RM Logo

fence
Remarks
Prevents the turtle from crossing the edge of the screen.
If you try to make it cross the edge of the screen, an
error message will be returned.
Crossing the edge of the screen will cause a throw 'fence
which can be caught using catch 'fence (see chapter §).
The turtle’s field is normally ‘unfenced’ at start-up
time.
Example
Using:

1: forever [catch 'fence [forever [fd 11]
seth heading + 1801

reverses the direction of the turtle every time it hits
the edge.

Associated Primitives

fenceq, nofence, nowrap, wrap, wrapq

Reference.67



RM Logo

fenceq

Remarks

Returns ' true if the turtle’s field is ‘fenced’, otherwise
it returns 'false.

Associated Primitives

fence, nofence, nowrap, wrap, wrapq

Reference.68



RM Logo

fill number1 number2

Remarks

Fills the graphics plane with the pen colour, taking the
current turtle position as the starting point. When a
colour other than the background colour is encountered, it
is treated as a boundary.

If numberl is either 0 or 1, the area is filled with a
solid colour (the current pen colour) and number2 is
ignored (but must be present).

If numberl is 2, the area is filled with a pattern.
number2 can take the values 0 to 7 and each gives a
different pattern.

If number1 is 3, number2 defines a hatching pattern (a
bolder pattern). The range of numbersis O to 5.

Example

The following commands draw a square and fill itin as a
brick wall:

: repeat 4 [fd 80 Lt 901
1: Lift Lt 45
1: fd 10
1: setpc 2 fill 0 O
1: setpc 14 fill 3 5

Reference.69



RM Logo

first nwl

Remarks

Returns the first element of its input, which can be a
number, a word or a list.

The input cannot be an empty word or an empty list.
Examples

1: say first ‘'wolf

1: say first [big bad wolf]

big

1: say first 12345

1
Associated Primitives

butfirst, butlast, last

Reference.70



RM Logo

forever list

Remarks:
Repeats the command list forever. You can stop the
command by pressing <ESC>, encounteringend, stop,
escape or using throw.

Examples

1: forever [forward 1 right 1]

Pairing forever with catch can be very useful. For
example to print the file sales on the screen:

1: catch 'endfile L[forever [type rfc 'salesll]
Associated Primitive

repeat

Reference.71



RM Logo

forward number

fd

Remarks

Moves the turtle 7 steps in the direction of its current
heading. If the turtle’s pen is down, the turtle leaves a
trace of its path. If number has a negative value, the turtle
moves backwards.

Example

Tz s
1: forward 50

Associated Primitive

backward

Reference.72



frac number

Remarks

Returns the fractional part of number.

Example

1: print frac exp 1
0.71828172845904

RM Logo

Reference.73



RM Logo

gc

Remarks

gc stands for garbage collector. It allows Logo to re-use

all of the workspace that is no longer required. Logo
automatically performs a garbage collection when it begins
to run out of unused workspace. This can be observed when
the turtle is drawing by a brief halt in the turtle’s
movement.

Associated Primitive

nodes

Reference.74



RM Logo

goodbye
exit

Remarks
Deletes extensions, variables and procedures. Closes

dribble file, clears text and graphics and returns to the
operating system.

Reference.75



RM Logo

goto word

Remarks

Transfers control to a different line within the same
program. The line to which control is transferred must
begin with a tag. A tag is a word; optionally with or
without a beginning quote mark, followed by colon dash

(:-).
Example

This procedure removes one item from a list. The goto is
completely redundant; it just illustrates how to use the
primitive.

1: build 'remove

remove 'x 'list

if emptyq :list [goto 'errorl

result if first :list = :x [rest :listl]
[first:list+>remove :xrest :list]

error :—say :x +> [is not in the Llist] escape

It is considered bad programming style to use goto

statements, but they are occasionally useful in error
checking.

Reference.76



RM Logo

greaterequalq nw1 nw?2
8rq

B —
Remarks
Returns 'true if nwl is greater than or equal to
nw2, otherwise it returns “false’.
® Two numbers are considered equal if they differ by
1/200000 or less.
® Words are compared in dictionary order A...Z,
irrespective of case.
The inputs nw1 and nw2 must be of the same type.
Examples

1: if :number >= 0 [panicl
1= if grq 5 2 [say [5 is bigger than 211

Associated Primitive

greaterq

Reference.77



RM Logo

greaterq nwl nw?2
g¢q

=
Remarks
Returns ' true if nwl is greater than nw2.
® The numbers are considered equal if they differ by
1/2000000 or less
® Words are compared in dictionary order A..Z,
irrespective of case.
nw1 and nw2 must be of the same type.
Example
The following command line tells the turtle that if
distance is greater than 10 it is to go forward 10 steps,
otherwise it is to go forward distance steps:
1: forward (if :distance > 10 L[101 L[:distancel)
Associated Primitive

greaterequalq

Reference.78



RM Logo

grievance

Remarks

Returns the text of the message given by Logo in reply to
the most recent error.

Example
1: say grievance
Associated Primitive

moan

Reference.79



RM Logo

heading

Remarks

Returns the turtle’s current drawing heading (not its
movement heading).

Examples

1z «©s
1: print heading
0

1: left 90
1: print heading
270

The following procedure draws a circle and prints the
turtle’s heading after each step:

1: build 'circle

circle
repeat 36 [fd 10 Lt 10 print headingl

Associated Primitive

seth

Reference.80



i

RM Logo

hideturtle
ht

Remarks

Makes the turtle invisible. The turtle continues to draw
and obey commands.

You can make the turtle visible again using showturt Le.

Example
1: cs
1: forward 50
1: left 90
1: hideturtle
1: forward 50

Associated Primitive

showturtle

Reference.81



RM Logo

if a list1
if a list1 list2

Remarks

In the first form shown above, if the expression a is
'true the command list1 is executed, otherwise the next
line is executed.

In the second form, if the expression a is ' true the
s P

command /list1 is executed; if a is ' false, the command
list2 is executed.

In both forms, if list1 or list2 produce a result, this
will be passed back as the result of the i f statement.

Examples

The following example is a procedure which allows the
computer to make a decision (yes or no) for you. Three
versions are given, each using if in a different way.

if used to control execution:

The procedure decision using if with one list:

1: build ‘decision

decision

if pick 2 = 1 [result 'yesl

result 'no

1: say decision
yes

Reference.82



RM Logo

The same proceduredecision using if with two lists:

1: edit decision
if pick 2 = 1 [result 'yesl [result 'nol

1: say decision
'no

Finally, i f used to return a result:

1: edit 'decision
result if pick 2 = 1 ['yes] ['nol

1: say decision
'no

Reference.83



RM Logo

implode [ist

Remarks

Returns the word made by concatenating (joining) all the
words in its input list.

imp Lode is the opposite of exp lode.
Example

1: print implode [s L o u g hl
s Lough

Associated Primitive

explode

Reference.84



RM Logo

infile filename

Remarks

Opens the file filename for input. Returns ' true if the
file is opened successfully and ' false otherwise.

Example
The following command tries to open the filedataf1i Le for
input. Ifdatafi Le is open it prints the message ' input

file already open' and stops.

1: unless infile 'datafile.dat
[say [input file already openl] escapel

Associated Primitives

closefile, infiles, readfilec, readfiled,
readfilel

Reference.85



RM Logo

infiles

Remarks
Returns a list of the names of files open for input.
Example

1: print infiles
[datafilel datafile2]

Associated Primitives

closefile, infile

Reference.86



RM Logo

int number

Remarks

Returns the integer value of number. Any decimal part is
truncated for both positive and negative values of number.
You can make sure of rounding numbers up by adding 0.5 as
shown in an example below.

Examples
1: print int —2.3
—_
1: print int exp 1
2
1: print int 44.6
A
1: print int (44.6 + 0.5)
45

Reference.87



RM Logo

join w1 wi2

++
Remarks
Returns a word or list by joining the first and second
inputs.
Inputs to join cannot be numbers and they must both be of
the same type.
Examples

1: print join [the owll]l [and the pussycat]
[the owl and the pussycatl]

1: print join 'pussy 'cat
'pussycat

1: print L[a bl ++ L[Lcl
[a b c]

Associated Primitives

putfirst, putlast, sentence

Reference.88



RM Logo

key

Remarks
Delays the calling process until a key is struck and then
returns the value of this key without echoing it to the
screen. Digits are returned as a Logo number; other
characters are returned as one-character words.
If Logo is reading a command file, key returns the next
character read from the keyboard and not from the command
file.

Please see Chapter 7 for a detailed explanation of using
key.

Special characters returned by key will be displayed as an
escape sequence if you useprint.

Example

If you press <CTRL> and G together after print key, the
escape sequence will be displayed as:

1: print key
"\07

Associated Primitives

keyq, readlist

Reference.89



RM Logo

keyq

Remarks

If a key has been struck, keyq returns ' true and the key
can be read using key. ' false is otherwise returned. If

Logo is reading a command file, keyq will still test the
keyboard.

Examples

The following procedures make the turtle move forward
continuously and let you use the <L> and <R> keys to
change its direction:

1: build 'move

move
forever [if keyq [check.key keyl [forward 111]

1: build check.key

check.key 'button

make 'button lowercase:button
if :button 'L [left 101

if :button 'r Lright 101

([l

Associated Primitive

key

Reference.90



RM Logo

label nwl

Remarks

Prints the text nwl near to the turtle. If the current
process is addressing more than one turtle, then each will
print nwl. The label is printed in the current turtle pen
colour. The turtle is not moved by the label.

Example
1: cs

1: forward 50
1: label [hello worldl]

heilo world

Reference. 91



RM Logo

last nwl

Remarks

Returns the last element of its input. The input must not
be empty.

If the input is a decimal number, the digit before the
decimal point is returned. If an integer is input then
the last digit is returned.

The last letter of a word is returned, and the last item
in a list.

Examples
1: say last 34
4
1: say last 45.6
5
1: say last [humpty dumpty sat on a walll
wall
1: say Llast 'humpty

Y
Associated Primitives

butfirst, butlast, first

Reference.92



RM Logo

left angle
It

Remarks

Turns the turtle left (anticlockwise) by angle degrees.
If angle has a negative value, the turtle will turn right
(clockwise).

Examples

cs
Left 90
cS

Left —90

— el e
&% mm EE ®E

Try the following:
1: dsh [box [8 —81[8 —81L[8 81[—8 81[—8 —811]
1: setshape 'box
1: repeat 360 [left 1]
Associated Primitive

right

Reference.93



RM Logo

lessequalq nw1 nw?2
leq

& =
Remarks
Returns ' true if the first input is less than or equal to
the second, otherwise it returns 'false.
® Two numbers are considered equal if they differ by
1/200000 or less.
® Words are compared in dictionary order A...Z,
irrespective of case.
The inputs nw1 and nw2 must be of the same type.
Examples
1: say Llessequalg 1 3
true
1: say Llessequalg 6 2
false
1: say 3 <= 3
true
1: say 5 <= 3
false
1: say 'peter <= 'cathy
false
1: say 'cathy <= 'peter
true

Associated Primitive

Lessq

Reference.94



RM Logo

lessq nwl nw?2

Remarks

Returns ' true if nwl is less than nw?2.

® Two numbers are considered equal if they differ by
1/2000000 or less.

® Words are compared in dictionary order A...Z,
irrespective of case.

Examples

1: say lessgq 1 3

true

1: say Llessq 6 2

false

1: say lessq 4.00001 4.00002
true

Associated Primitive

Llessequalqg

Reference.95



RM Logo

lift

Remarks

Lifts the turtle’s pen off the paper so that the turtle
doesn’t draw when it moves. This primitive is the
opposite of drop. It is also used in defining the turtle
shape (seedefineshape).

Example

1: c¢s

= Lift
1: fd 20
1: drop
1: fd 20

Associated Primitives

drop, upq

Reference.96



RM Logo

line list1 list2 number

Remarks

Draws a line in colour number between the points list1 and
list2. list1 and list2 are in the form of coordinate
pairs.

Example

The following commands draw a square on the screen:

line [—80 801 [80 801 3
line [80 801 [80 —801 3
line [80 —801 [—80 —801 3
line [—80 —80]1 [—80 801 3

e )
s Em wEw &m

Associated Primitive

setpoint

Reference.97



RM Logo

listq rwl

Remarks

Returns 'true if nwlis alistand 'false if it is not.

Examples

The following procedure, check, checks if its input is a
list. If so, it prints ' List"', otherwise it prints 'not a
List’.

1: build 'check

check 'object
if listq :object [say [listl]l [say [not a Llistl]

1: make 'towns [Durham Oxford Londonl
1: make '"town 'Exeter

1: check :towns
List

1: check :town
not a Llist

Associated Primitive

Reference.98

numberq, wordg



RM Logo

In number

Remarks
Returns the natural logarithm (log to base e) of number.
number must be greater than zero.

Examples

1: Ln 0.5
—0.69314718055995

1: n 20
2.99573227355399

Associated Primitive

exp

Reference.99



RM Logo

local wl

Remarks

Creates one or more new variables within a procedure.
These variables can only be used by the procedure which
generates them and by any procedures called by the
generating procedure.

If a local variable is given the same name as a global
variable, the local variable is used until the end of the
procedure which created it. The global variable is then
available again.

Examples
local [p q rl
creates local variables called p, q and r.

The following example solves quadratics, giving you a list
of all solutions.

1: build 'solve.quad

solve.quad 'a 'b 'c

local 'd

'd <—(:b * b —4 % 28 * z1g)

result branch :d < 0 [[]] case :d = 0
Leval [=:b/2*:alldefault
Leval [(—:b+sqt :d) /(2% :a)
(-:b-sqgt :d) /(2% :a)]1]

1: print solve.quad 1 7 12
[—3 —4]

1: print solve.quad 1 (—8) 16
C4]

Reference.100



RM Logo

log number

Remarks
Returns the logarithm (log to the base 10) of number.
number must be positive and greater than 0.
Examples

1: log 0.5
—0.30102999566398

1: log 20
1.30102999566398

Reference.101



RM Logo

lowercase nwl

Remarks
Returns the word or list made by converting every
alphabetic character in its input to lower case. There is
no effect on a number.

Example

1: say lowercase [LOGO systeml
logo system

Associated Primitive

uppercase

Reference.102



made

Remarks

Returns a list of names of all global variables and
variables known to this process.

Example

1: say made
side angle number

Associated Primitives

make, unmake

RM Logo

Reference.103



RM Logo

make word nwl
<-

Remarks

Creates a variable called word and gives it the contents
of nwl.

You can get at the contents of the variable using
value ora colon (z).

Ifmake isused in a procedure and word doesn’t already
exist, then the resulting variable is global. It will
remain in Logo’s workspace unless you use unmake on the
word.
Examples
1: make 'angle 90
1: say :angle
90
1: 'side <—100
1: say value :side
100
Associated Primitives

local, made, unmake, value, valueq

Reference.104



RM Logo

moan

Remarks
Reproduces the last error. All processes are stopped.
You can catch 'error when moan is run; if you do then
no message is printed and the process that caught the
error continues after the catch.

Associated Primitives

grievance

Reference.105



RM Logo

multiple

Remarks

Turns parallel processing back on after single has
been used. multiple is the default state.

Associated Primitive

single

Reference. 106



multiply number1 number2
mul

o

Remarks
Returns the product of its inputs.
Examples

1: print multiply 20 8
160

1: make 'x 13
1: say multiply :x 3
39

1: say 10.5 * 10
105

RM Logo

Reference.107



RM Logo

near

Remarks
Returns a list of the turtles which are within eight
screen units of the centre of the current turtle.
If your process is addressing more than one turtle,
near refers to the lowest numbered one (normally the
earliest one created).
If any turtle is sensing and throw 'touchturtle occurs,
then near can be used to find out which turtle(s) caused
the throw.

Example
12 €8
1: tell [1 2 31
1: print near
[2 3]

Reference.108



RM Logo

nodes

Remarks

Returns a number indicating the amount of unused memory
in Logo’s workspace.

For a more accurate measure of free work space, use gc
before nodes.

Logo stores procedures and variables using complex rules.
It is very difficult to give an easy method to find out
how much workspace is occcupied by any application.

Associated Primitive

gc

Reference.109



RM Logo

nodribble

Remarks
When the dribble primitive is used, everything you type in
is written to a command file. nodribble closes the
command file and your typing stops being recorded. You can
replay the command file using consult or replay.
Associated Primitives

consult, dribble, dribbleq, replay

Reference. 110



RM Logo

nodriver

Remarks

Unloads any floor turtle driver which is present in Logo.

Associated Primitive

driver

Reference.111



RM Logo

nofence

Remarks

When the fence primitive has been used, an error is
reported if the turtle hits the edge of the screen.

nofence removes this error reporting and lets the turtle
move off the screen.

Examples

T2 €8
1: fence
1: forward 1000

produces an error message on the screen because the turtle
has hit the ‘fence’ around the screen. However, nofence
will let the turtle out of the visible screen area.

1: ¢s nofence
1: fd 1000
1: back 950

Associated Primitives

fence, fenceq, nowrap, wrap, wrapq

Reference.112



RM Logo

nosensc

Remarks

Switches off the sensing for all turtles controlled by a
particular process.

When turtles are sensing, a signal is thrown if they go
near another turtle, go into a different background colour
or hit the edge of the screen. Sensing is time consuming,
and it is advisable to turn sensing off with nosense
whenever you don’t need it.

Associated Primitive

sense

Reference.113



RM Logo

not a

Remarks

Returns 'true if its inputis 'false and 'false
if its inputis " true.

Examples

1: print not (1 = 1)
false

1: print not (1 = 2)
true

1: print ~ !'false
"true

Associated Primitives

both, either, xor

Reference.114



RM Logo

nowrap
nofence

Remarks

Allows the turtle to move off the screen without appearing
on the opposite edge.

If the turtle moves off the screen following a wrap
command, then it reappears at the opposite side of the
screen. nowrap lets the turtle continue to move off the
screen without reappearing on the opposite side of the
screen.

nofence can be used interchangeably with nowrap.

Examples \ \

1 cs
1: wrap \
1: left 45 R\

1: forward 1000

shows the turtle wrapping around the screen and the
following shows the turtle doing the same action without
wrapping.

: cs

nowrap

: left 45

: forward 1000

— el —
= ma

Associated Primitives

fence, fenceq, wrap, wrapqg

Reference.115



RM Logo

numberq nwl

Remarks

Returns ' true if nwl is a number and ' false otherwise.
Example

The following procedure tests if its input is a number:

1: build check.no

check.no ‘'object

1: say putfirst :object if numberg :object
CLis anumberl]
[Lis not a numberll]

1: make 'item1 1234
1: checkno :item1
1234 is a number

1: make 'item2 [1 2 3 4]

1: checkno :item?2
[1 2 3 4] is not a number

Reference.116


http://check.no
http://check.no

objects

Remarks

RM Logo

Returns a list of all the Logo words which have had
properties assigned to them using assert.

Examples

1.4
i -
i i
iU

assert 'whiskers 'species 'cat

assert 'patch 'species 'dog

assert 'patch ‘'colour [black and whitel
objects

[Cpatch whiskers]

Associated Primitives

assert, asserted, assertedqg, assertions,
classified, deny

Reference.117



RM Logo

outfile filename

Remarks

Creates the file filename and opens it for output. Any
existing file with the same name is deleted.

Returns ' true if the file is successfully opened and
'false otherwise.

Example
The following command tries to open dataf i le as an output
file. If it is successful, the program continues,

otherwise it prints the message 'output file already open’
and stops.

if not outfile 'datafile [say [output file
already openl stopl

Associated Primitives

appfile, closefile, outfiles, writefilec,
writefiled, writefilel

Reference.118



RM Logo

outfiles

Remarks

Returns a list of the names of files currently open for
output.

Example

1: print outfiles
[datal.dat data2.datl]

Associated Primitives

closefile, outfile

Reference.119



RM Logo

parallel [ist

Remarks
The commands given in the list of lists are all started as
separate processes. The process that issued the parallel
command is suspended until they have all finished.

Unless catch catches it, an error occuring in any process
will terminate all other processes running at that time.

Example
parallel [Lmonitor.keyboard]l [move.robotll]

A further example of parallel processing is provided in
the file cage.def on the RM Logo disk.

Associated Primitives

begin, run

Reference.120



RM Logo

pcC

Remarks
Returns the colour of the turtle’s pen. If more than one
turtle is active, then the pen colour of the first turtle

created is returned.

Examples

Associated Primitive

setpc

Reference.121



RM Logo

pennormal

Remarks

Lowers the turtle’s pen and changes the drawing style so
that existing lines are overdrawn when the turtle moves.

pennormal is used to cancel the effect of a penreverse.
The penreverse primitive makes the turtle erase existing
lines to appear to be drawing over them (known as XOR
drawing).

Associated Primitives

penreverse, reverseq

Reference.122



RM Logo

penrcverse
pPX

Remarks

Lowers the turtle’s pen. When the turtle moves, it draws
lines where there are none, and erases existing lines in
the same colour that it crosses over.

Example

cs
repeat 4 [fd 40 Lt 901
penreverse

repeat 4 [fd 40 Lt 90]

e ey
"N EW EW EW

The corner dots remain because each corner is plotted
twice: once when the turtle arrives; once when it leaves.

Associated Primitives

pennormal, reverseqg

Reference.123



RM Logo

pi
Remarks

Returns the value of pi (3.142...) accurate to the full
precision of the internal arithmetic.

Examples

1: print pi
3.1459265358979

1: print 22/7 —pi
0.00126448926735

The following procedure can be used to calculate the area
of a circle, given its diameter:

1: build ‘'area.circle

area.circle 'radius
result pi * (:radius 12)

Reference.124



RM Logo

pick number

Remarks:

Returns a pseudo-random integer in the range 1 to number
inclusive.

Example
The following example simulates the throwing of a die:
1: print pick 6
?: print pick 6
3
Associated Primitives

random

Reference.125



RM Logo

po wl

Remarks

Prints out the definition of the procedures named in w! on
the screen.

A library procedure copy is provided on your RM logo disk
which will list them to a printer.

Example
1: po titles

lists the definition of all procedures known to Logo which
are neither buried nor primitives.

Reference.126



RM Logo

point list

Remarks
Returns a number which tells you which colour the point
list is currently painted. list is a coordinate pair.
The significance of colour numbers is described in Chapter

2

Examples
1: setpoint [40 401 3
1: say point [40 401
3

Associated Primitive

setpoint

Reference. 127



RM Logo

power number1 number2

Remarks

Raises numberl to the power of number2.
Examples
: power 2 3

: power 3 2

Reference.128



RM Logo

print nwl

Remarks
Prints the contents of nw! on the screen.

Lists are printed with their outermost brackets. Elements
of a list are separated by a space.

Logo special characters whose ASCII codes are within the
(printable) range 20—7E hexadecimal are printed prefixed
by the escape character \ (characters whose ASCII codes
are in the range 01 to 1F and 7F to FF hexadecimal are
printed as two digits prefixed by \).

Examples
1: print [Logo rules okl
[Logo rules okl
1: print 'elephant
'elephant

1: print "bE
"1b\0e

1: print "21 ; this is not special to Logo
i

1: print "23 ; this 1is special to Logo
L}
\#

Associated Primitives

say, type

Reference.129


file://'/1b/E

RM Logo

putfirst nwl list

pf
+>

Remarks

Returns the list which is produced by putting #wl at the
front of list.

Examples

1: print putfirst 2 [3 4]
[2 3 4]

1: print putfirst [the owl] [and the pussycatl]
[[the owl]l] and the pussycatl]

1: print 'x +> L[y z]
[x y z]

Associated Primitives

putlast, join, sentence

Reference.130



RM Logo

putlast [ist nwl

pl
<+

Remarks

Returns the list which is produced by putting nwl at the

end of list.
Examples

1: print
[3 4 5]

1: print
Cthe owl

1: print
[x y z]

putlast [3 41 5

putlast [the owl and]l [the pussycatl
and L[the pussycatll]

[x yl <+ 'z

Associated Primitives

putfirst, join, sentence

Reference.131



RM Logo

random

Remarks
Returns a random decimal fraction between 0 and 1.
Examples

1: print random
0.050603

The following routine returns a pseudo-random number drawn
from a Gaussian distribution of mean and standard
deviation (sd).

1: build 'gauss

gauss 'mean 'sd

local 't

't <D

repeat 12 ['t <—:t + random]
result :mean + (:t —6) * :sd

1: print gauss 100 16
08.65% o«

Reference.132



RM Logo

readfilec filename
rfc

Remarks
Reads the next character from the named file and returns a
one-character word.The file must have been opened for
input.
If there is no more data in the file, readf i Llec throws
"endf1 Le. If this is not caught, it returns the word
'endfi Le as its result.

Examples
1: make 'data readfilec 'myfile.dat
will read the next character from the filemyfile.dat
An example procedure Listfi le, which prints the contents
of a file on the screen, is provided on the RM Logo disk
as Listfile.def.

Associated Primitives

closefile, infile, infiles, readfiled,
readfilel

Reference.133



RM Logo

readfiled filename
rfd

Remarks
Reads the next Logo data item (a number word or list) from
the named file and returns it. The file must have been
opened for input.
If there is no more data in the file, readf1i Led throws
'endfi Le. If this is not caught, it returns the word
'endfile as its result.
Example
1: make 'data readfiled 'myfile.dat
Associated Primitives

closefile, infile, infiles, readfilec,
readfilel

Reference.134



RM Logo

readfilel filename

rfl

Remarks

Reads the next line from the named file and returns a Logo
list. The file must have been opened for input.

If there is no more data in the file, readfi Le L throws
endf1i Le. If this is not caught, it returns the word
'endfile as its result.
Example
1: make 'data readfilel 'myfile.dat
Associated Primitives

closefile, infile, infiles, readfilec,
readfiled

Reference.135



RM Logo

readlist
rl

Remarks

Reads information typed at the keyboard until you press
<ENTER>, then returns what you typed as a Logo
list.

Examples
1: build ‘question

question
say [name one colour in a traffic lightl
if amongg readlist [[Lred] [yellow]l [Camberl]
[greenl] [say [correct!] stopl
[say [no, tryagainll]
question

1: question

name one colour in a traffic Light
purple

no, try again

name one colour in a traffic Llight
green

correct!

Associated Primitives

ask, key, keyq

Reference.136



RM Logo

remainder number number
rem

%

Remarks
Returns the remainder that results from dividing the first
input by the second (the quotient can be found by using
the primitive share).

Examples
1: print remainder 13 2
1
1: print remainder 12 2
0
1: print 41 7 10
1

Associated Primitive

share

Reference.137



RM Logo

rename wordl word2

Remarks
Renames the procedure word1, giving it the new name
word2. The old name is lost. You can’t rename a
primitive or a buried procedure.

Example
1: rename 'polygon 'six.sided.figure

Associated Primitive

alias

Reference.138



RM Logo

/

renamefile filenamel filename?2

Remarks

Renames the file filenamel to filename2. Returns
' true if the operation succeeded and ' false otherwise.

Example

unless renamefile 'turtles1 'turtles2 [say L[cannot
rename your filel escapel

Associated Primitives

directory, erasefile

Reference.139

'



RM Logo

repeat integer list

Remarks

The list of commands list is repeated integer times.
integer must be zero or positive. If integer is zero then
the list is not run.

Examples

The following primitives draw a square:

1: cs
1: repeat 4 [forward 50 left 901

The following example draws some ‘spinning squares’. They
use the following procedure:

1: build 'square

square
repeat 4 [fd 50 Lt 901

1: c¢s
1: repeat 3 [square Lt 1201]

Associated Primitives

do, forever, unless, while
Reference.140



RM Logo

replay filename

Remarks
Replays a sequence of commands held in the file filename.
The commands are displayed on the screen and the prompt

changes from 1: to 1<.

Even if an error occurs in the file, the commands continue
to be replayed.

Example
1: replay 'turtlesi.lgc
Associated Primitives

consult, dribble, dribbleq

Reference.141



RM Logo

result 7wl

Remarks

Stops the procedure in which it occurs and passes control
back to the procedure or command which called it. It
returns the value #wl to this procedure or command.

Examples

The following procedure calculates the average of two
numbers:

1: build 'average

average 'number1 'number2
result (:number1 + :number2)/?2

1: say average 5 15
10

1: say average 10 15
12.5

Reference.142



RM Logo

reverseq

Remarks
Returns 'true if the turtle’s pen is plotting in reverse
mode. penreverse or px cause the turtle pen to plot in
reverse or exclusive OR mode.

If the pen is lifted or is plotting normally, it returns
'false.

Associated Primitives

pennormal, penreverse

Reference.143



RM Logo

right angle
rt

Remarks

Turns the turtle right (clockwise) by angle degrees. If
angle has a negative value, the turtle turns to the left
(anticlockwise).

Examples

cs

right 45
cs

right —45

. s e ]
e ER EE mm

Associated Primitive

left

Reference.144



RM Logo

rubber

€rascr

Remarks

Selects the pen colour which matches the background. The
turtle rubs out any lines it crosses.

The line-drawing algorithm used means that forward and
backward do not necessarily trace exactly the same
screen path. For perfect rubbing out, you should start in
the same place and retrace your steps exactly.

rubber is equivalent to setpc bg.

Example
1: c¢s
1: forward 20
1: centre
1: rubber
1: forward 20

Reference.145



RM Logo

run list

Remarks

Executes the commands in list. If any command in list
returns a value, this value is also returned by run,
and commands after that are not executed.

Examples

The following procedure executes whatever you type at the
keyboard providing it produces a result. forward 50 will
give an error because it doesn’t produce a result!

1: build run.input
run.input

say run readlist
run.input

1: run.input

7210 + 5

15

725 * 4
20

210 = 5 % 3
false

Reference.146



RM Logo

say nwl

Remarks

Prints the contents of nw/! on the screen, followed by a
carriage return.

say prints lists without their outermost brackets.
say also sends special characters to the screen.
Examples

1: say 1 + 3
14 3

1: say [hello therel
hello there

The following command appears equivalent to ts and will
reset and clear the screen:

1: say "ibe

However, you should use such calls with care and, if it
exists, use the equivalent in the Logo language.

Associated Primitives
print, type

Reference.147



RM Logo

scrap wl

Remarks
Procedures named by wl are deleted from memory. If
wl is a list and one of the procedures named does not
exist, none will be scrapped.

The following is a special case which scraps everything
that isn’t buried:

scrap titles
Examples
1: scrap 'triangle

1: scrap [square trianglel

Reference. 148



RM Logo

s€nsc

Remarks

Makes the turtle sensitive to touching other parts of the
graphics screen.

If the turtle is about to move onto a different background
colour, it will stop and doa throw 'touch.

If the turtle goes near another turtle or hits the edge of
the screen, it will stop and do a throw 'touchturtle.

fence and catch 'fence work independently of the
turtle’s sensing or not sensing. The throw will direct
control to the process which gave the current turtle the
most recent sense command. See Chapters 5 and 12 for
details of how to use throw.

sense is time consuming, you should cancel it with
nosense when you don’t want it in use any more.

Associated Primitives
fence, nofence, nosense

Reference.149



RM Logo

sentence nwll nwi2
se

&&

Remarks
Makes a list out of nwl1 and nwi2. If they are both
lists, sentence returns a list made by joining them.
If they are both words, it puts them both into a list. If
only one is a list, sentence includes the other nwl in
It.

Examples

1: print sentence 'cats [are greatl
Lcats are greatl]

1: print se [cats dogs] L[rabbits hamstersl]
[cats dogs rabbits hamsters]

1: print 'butter && 'flies
[butter fliesl]

Associated Primitives

join, putfirst, putlast

Reference. 150



RM Logo

setbg number

Remarks
Changes the screen background colour to number.
The command will take effect from the next c Lean or
clearscreen command, and will be ignored if the screen is
in text only mode. The numbers associated with colours
are listed under the description of the colour
primitive.

Example

1: setbg 3
1: cs

Associated Primitive

bg

Reference.151



RM Logo

setc number

Remarks

Changes the colour in which the turtle is painted on the
screen to number.

The numbers associated with colours are listed under the
description of colour.

This colour is not necessarily the same as the turtle’s

pen colour. Nor will the turtle always appear as the

colour you specify it to be. The turtle is plotted in

exclusive OR mode (mixing colours where they coincide on
screen) so you must consider the background colour when
choosing the turtle colour. A black background however,
will guarantee an accurate turtle colour.

Examples

: print colour

setc 1
print colour

Associated Primitive

colour

Reference.152



RM Logo

setcursor [ist

Remarks

Moves the cursor to the position given by list. The first
element of [ist is the screen line and the second, the
screen column, using the following convention:

-

line

20
line 1
e 25

1 80 1 40

column column
text mode graphics mode
Out-of-range values produce incorrect displays on screen.
Example

1: setcursor [20 16]
Associated Primitive

cursor

Reference.153



RM Logo

setdir angle

Remarks

Sets the turtle’s movement heading to angle. The drawing
heading is not affected.

Examples

The following commands move the turtle at an angle of 45
degrees while keeping it pointing northwards:

14 'gs
1: tell 1
1: setdir 45

1: setspeed 20
Associated Primitive

dir

Reference.154



RM Logo

seth angle

Remarks

Sets the turtle’s drawing heading to angle degrees. The
turtle shape turns to show its new direction, but the
movement heading is not affected.

Headings increase clockwise from 0, as shown below.
Negative values of angle make the turtle turn in an
anticlockwise direction.

270 W = » E 90

o ————»+ F 0

-

Examples
1= s
1: seth 120
1% s
1: seth —120
Associated Primitive

heading

Reference.155



RM Logo

setpc number

Remarks
Sets the turtle’s pen colour to number. The values of
number and their related colours, are given in Chapter 2
and listed under the primitive co lour.
The pen colour can be different to the turtle’s colour.
The colour may also be applied in either a ‘true’ or
‘reversed’ mode depending upon whether or not
penreverse has been used.

Example
1: setpc 2

Associated Primitive

pc

Reference.156



RM Logo

setpoint list number

Remarks

Plots a point in colour number at the position given in
list.

list is a coordinate pair.
Example

1: cs
1: setpoint [50 01 3

Associated Primitive

point

Reference.157



RM Logo

setpos list

Remarks
Sets the turtle’s x and y coordinates to the values given
by list. If this moves the turtle outside the graphics
area of the screen, and fence has been used, a throw
'fence occurs.
The turtle does not draw as it moves.

Examples

1: cs
1: setpos [50 501

Associated Primitives

pos, setx, sety, xcor, ycor

Reference.158



RM Logo

setshape word

Remarks
The turtle assumes the shape named by word. The shape
must have previously been defined in adefineshape
command.

shapes can be used to find out the defined turtle
shapes.

Example
The shape of an arrow can be assumed by the turtle by
first defining the arrow and then assigning the arrow
shape to the turtle.
1: say shapes
1: defineshape [arrow [—8 —8][0 0]L[8 —81]

Lift L001C0-121]

1: setshape 'arrow

Associated Primitives

bdefineshape, shape, shapedef, shapes

Reference.159



RM Logo

setspeed number

Remarks
Changes the turtle’s movement speed to number.

If number exceeds 100, there is no change to the turtle’s
speed. number may be negative (down to —100).

The turtle moves continuously in the direction given by
its movement heading but does not draw as it moves.
(Remember the movement heading is different from the
drawing heading.)

Example
1: setspeed 5

Associated Primitives

dir, setdir, speed

Reference.160



RM Logo

setx number

Remarks
Sets the turtle’s x coordinate to number. If this moves
the turtle outside the graphics area of the screen, and
fence has been used, a throw 'fence occurs.
The turtle does not draw as it moves.

Example

T4 &8
1: setx 50

Associated Primitives

setpos, sety, xcor, ycor

Reference.161



RM Logo

sety number

Remarks
Sets the turtle’s y coordinate to number. If this moves
the turtle outside the graphics area of the screen, and
fence has been used, a throw 'fence occurs.

The turtle does not draw as it moves.

Example

Associated Primitives

setpos, setx, xcor, ycor

Reference.162



RM Logo

shape

Remarks
Returns the name of the turtle’s shape. If more than one
turtle is receiving commands from this process, the result
refers to the most recently created turtle.

If the turtle’s shape is the default shape, shape returns
the empty word.

Example

1: cs
1: print shape

1: setshape 'bicycle

1: print shape
"bicycle

Associated Primitives

setshape, shapedef, shapes

Reference.163



RM Logo

shapedef word
Remarks

Returns the definition of the shape word.
Example
1: dsh [box[—8 —81[8 —81L[8 81[—8 8] [—8 —811]
1: print shapedef 'box
[box[—8 —81[8 —81[8 81[—8 81[—8 —811]
Associated Primitives

setshape, shape, shapes

Reference.164



RM Logo

shapes

Remarks

Returns a list of the shapes that Logo knows about at
that time. This doesn’t include the default shape.

Examples
If you have started Logo with the files supplied by
Research Machines (including the start-up file start. Lgc)
then:
1: print shapes
produces:
[bicycle car train coachl

Associated Primitives

setshape, shape, shapedef

Reference.165



RM Logo

share numberl number2

//

Remarks

Returns the integer quotient after number1 has been divided
by number2. The remainder can be found using remainder.

Examples

1: print share 6 3
2

: print share 6 4

P, .

1: print 11 //2
5
1: print eval ['answer share 6 4

'remainder rem 6 4]
Lanswer 1 remainder 2]

Associated Primitive
remainder

Reference.166



RM Logo

showturtle
St
Remarks
Makes the turtle visible. This is the opposite of
hideturtle.
Examples
1: ¢cs
1: ht
1: forward 50
1: Left 90
1: st
Associated Primitive

hideturtle

Reference.167



RM Logo

sin angle

Remarks
Returns the sine of angle, which is specified in degrees.
Examples

1: print sin 30
0.5

Associated Primitives

cos, tan

Reference.168



RM Logo

single

Remarks

The process which issues singLe turns off parallel
processing until it either issues amultiple command or
ends.

Example
single
% ik o 1
multiple
Where more than one process could be altering 'x,
single ensures that no other process reads ' x and alters
it at the same time — otherwise, you would get a wrong
result.

Associated Primitive

multiple

Reference.169



RM Logo

speed

Remarks

Returns the turtle’s current speed.

Examples
if speed = 0 [setspeed 101

The following example will change the speed of the turtle
smoothly; either accelerating or decelerating it:

1: build 'change.speed

change.speed 's
branch :s = speed [stopl
case :s>speed [setspeed speed +1]

case :s<speed [setspeed speed—11]
change.speed :s

s ©%

1: tell 1

1: change.speed 40
Associated Primitive

setspeed

Reference. 170



sqt number

Remarks

Returns the square root of number.

Examples

1: print sqt 16
4

1: print sqt 169
13

1: print sqt 5
2.23606797749979

RM Logo

Reference.171



RM Logo

stamp

Remarks

Prints a copy of the current turtle shape onto the
graphics screen at the turtle’s current position. The
copy will have the current turtle’s body colour.

Examples

The following example stamps a ring of turtle shapes
around the centre of the drawing position.

1: build 'stamp.circle

stamp.circle

cs

Lift

fd 90

Lt 90

repeat 36 [fd 10 Lt 10 stampl]
drop

1: stamp.circle
This example draws a row of parked cars.

cs

tell 1

setshape 'car

setx —100

Lift

repeat 6 [stamp rt 90 fd 30 Lt 90
setc pick 15]

—

Reference.172



RM Logo

stop

Remarks
Logo stops executing the procedure in which stop occurs
and either continues running the procedure which called it
or returns to the prompt 1:.

Example

The following procedure draws a ‘spiral square’, stopping
when the side of length 90 steps:

1: build 'spiral.square

spiral.square 'side

if :side > 90 [stopl

fd :side

Lt 90

spiral.square :side +5

1: spiral.square 7
Associated Primitives

end, escape

Reference.173



RM Logo

subtract numberl number2

sub

Remarks
Returns the result of subtracting number1 from number2.

The infix symbol = can be used between number1 and

number2.
Examples
1: print 7 =5
2
1: print subtract 5 7
-2
1: print 5 —5
10
Associated Primitives

add, divide, multiply, power

Reference.174



RM Logo

tan angle

Remarks

Returns the tangent of angle when angle is specified in
degrees.

Example

1: print tan 45
1

Associated Primitives

cos, sin

Reference.175



RM Logo

tell nwl

Remarks
Tells Logo which turtles you want it to ‘talk’ to. If a
turtle with the given number or name does not exist then
it will be created. Up to eight turtles can exist at any
time.
If you create an even number of turtles in the same
colour, and the same position you cannot see the turtles.
This is because they are drawn on screen in exclusive
OR mode.

The special case tel L [] means that the invoking
process ceases to address any turtles.

Following a change into graphics mode after text mode, one
turtle is present on screen.lt is turtle number 1, also
known as seymour.
Examples
1: tell 2
1: tell ‘'eric
1: tell [1 2 3]

Associated Primitives

told, toldg, turtles, vanish

Reference.176


http://screen.lt

RM Logo

text word

Remarks
Returns the definition of a procedure as a list.

The text returned on the screen is in the same form as the
input todefine.

Example
1: print text 'house
CLhousel [squarel [Lt 601 [trianglel
Crt 601 Cback 10011
Associated Primitives

define, po

Reference.177



RM Logo

textscreen
ts

Remarks
Allows the whole screen to be used for text.
Associated Primitive

clearscreen

Reference.178



RM Logo

throw word

Remarks

Used with the catch primitive. See Chapters 5 and 12 for
fuller explanations of both throw and catch.

Associated Primitive

catch

Reference.179



RM Logo

titles

Remarks

Returns a list of all the procedures in memory except
those which are buried.

Example

1: say titles

square triangle hexagon
Associated Primitive

po

Reference.180



RM Logo

told

Remarks

Returns the names or numbers of any turtles that the
current process is ‘talking’ to.

If a turtle has a name, told will return it, otherwise it
returns the number.

Examples

1: tell ‘'eric
1: tell 'sidney
1: print told
[sidney]

eric still exists but
this process is not talking
to him.

wE W

s

1: tell Leric sidneyl

1: print told

Leric sidneyl
Associated Primitives

tell, turtles, vanish

Reference.181



RM Logo

touch

Remarks

Returns the colour of the background directly beneath the
pen of the first turtle created.

Examples

: Cs
say touch

: forward 5
: say touch

Associated Primitives

setpoint, point

Reference.182



RM Logo

towards /ist

Remarks
Returns a list of two numbers.
list represents a point on screen as a coordinate pair.
The first number is the distance in steps towards the point
list. The second is the clockwise direction in degrees
from the turtle’s heading to the point list.
Examples
1: cs
1: print towards [20 0]
[20 901
To move the turtle to the point [20 0] type:
seth last towards [20 0]
forward first towards [20 0]

1
1
1: print pos
[20 01

Reference.183



RM Logo

trace w!

Remarks

Tells Logo to give a message every time the procedures
named by wl are called.

The message ends . . .? and waits for you to press:

® <ENTER> to continue

® <ESC> to stop

® <F10> key to stop tracing but resume processing.

See Chapter 12 for a more detailed description.
Examples

1: trace 'explore
1: trace [explore reportl

Associated Primitives

bug, unbug, untrace, walk, unwalk

Reference.184



RM Logo

turtles

Remarks

Checks which turtles have been created and returns their
names and numbers in the form of a list.

Examples

1: print turtles
[1 2 3 4]

One useful trick to get rid of all the turtles is
1: tell turtles vanish
Associated Primitives

tell, told, vanish

Reference.185



RM Logo

type nwl

Remarks

This gives the same output as say, except that it is not
followed by a carriage return.

Lists are printed without their outermost brackets and
with no spaces before punctuation marks.

type is useful for sending escape sequences or for
multiple output on a single line.

Examples
1: make 'x 42
1: make 'y 43
1: type [x = \20] type :x type [\20and y = \201
type :y type "Oa type "0d

X = 42 and y = 43

Reference.186


file:///20and

RM Logo

unbload w!

Remarks

Removes the Logo extensions that were loaded from the
file(s) named in wl.

Example
1: unbload 'stuff.lgx

removes the extensions that were loaded from the file
stuff.lgx.

Associated Primitives

bload, bloaded

Reference. 187



RM Logo

unbug w!

Remarks

Cancels the effect of bug. The named variable need not
exist.

Examples
T:unbug 'x
T:unbug [x yJ
Associated Primitives

bug, trace, untrace, unwalk, walk

Reference. 188



RM Logo

unequalq 7wl nwi2

ucq
Remarks
Returns the value ' true if nwl1 and nwl2 are unequal,
and 'false if they are equal.
® Two numbers are considered equal if they differ by
1/2000000 or less.
® Words are considered unequal unless they contain the
same order of letters, irrespective of case.
® Lists are unequal unless their elements are equal and
in the same order.
Example
1: unless :x ueq 10 [say [something is wrongll
Associated Primitives

equalq, greaterequalq, Llessequalg

Reference.189



RM Logo

unless a list

Remarks
Executes list unless the expression ais ' true.
This primitive is equivalent to:
if notalist
Example
unless :number > 0 [error.handlerl]
Associated Primitives

do, if, while

Reference.190



RM Logo

unmake w!

Remarks

If the input is a word, the variable named by the word is
erased.

If the input is a list, each variable named in the list is
erased.

unmake made will remove all variables.

You will get an error if you try to unmake a
non-existent variable.

Examples

1: unmake 'x

1: unmake [x y =z]
Associated Primitives

made, make

Reference.191



RM Logo

untrace w!

Remarks
Cancels the effect of trace on the procedures named by
wl. You cannotuntrace the procedures named by w!
unless they exist.

Examples

1: untrace ‘explore
1: untrace [explore reportl]

Associated Primitive

trace

Reference.192



RM Logo

unwalk w!/

Remarks

Cancels the effect of wa Lk for the procedures named by
wl. You cannot unwa Lk procedures that do not exist.

Examples

1: unwalk 'explore
1: unwalk [square trianglel

Associated Primitive

walk

Reference.193



RM Logo

uppercase nwl

Remarks

Converts every alphabetic character of nwl into a
capital letter and returns the changed nwl.

Example

1: say uppercase [LOGO system]
LOGO SYSTEM

Associated Primitive

Lowercase

Reference.194



RM Logo

upq

Remarks

Returns ' true if the turtle’s pen is up and 'false
if it is down.

Associated Primitives

drop, lift

Reference.195



RM Logo

value word

Remarks

Returns the value associated with the name word. value
has the same effect as putting a colon (:) before a name:
it returns the contents. Unlike the colon, it can be
recursive.

Examples
1: make 'x 12

1: say value 'x
12

1: say :x
12

1: build 'decrement

decrement 'v.name
make :v.name (value :v.name)—1

1: make 'x 42
1: print :x

42

1: decrement 'x
1: print :x

41

Associated Primitive

valueq

Reference.196



RM Logo

valueq word

Remarks

Returns ' true if word is the name of a variable,
otherwise it returns 'false.

Associated Primitive

value

Reference.197



RM Logo

vanish

Remarks

Turtles controlled by the process disappear. They are no
longer maintained by Logo.

Associated Primitives

tell, told, toldq, turtles

Reference.198



RM Logo

walk wl

Remarks
When any of the procedures named by w! are called, Logo
prints each line before executing it and waits for you to
press a key before continuing. This is useful in
debugging.

The keys you can press, and their significance, are
described in Chapter 12.

The procedures must exist when you give the command
wa Lk.

Examples

1: walk 'explore
1: walk [square circlel

Associated Primitive

unwa Lk

Reference.199



RM Logo

whenever a [ist

Remarks
whenever is intended for parallel processing. The
expression 4 is evaluated continuously and, when it
becomes true, Logo executes the command /ist.

Logo waits for a to become true again before running
list again.

Example
whenever :=:x = 0 [make 'x 1001
Associated Primitive

await

Reference.200



RM Logo

while a list

Remarks

As long as the expression a is ' true, the command ist
is repeatedly executed.

whi Le is similar todo. ..unti L except that while
may never execute the command /ist, butdo...until
always executes it at least once.
Example
1: make 'number 12
1: while :number > 0 L[print :number
make :number :number—11]
Associated Primitives

do, if, unless

Reference.201



RM Logo

wordq nwl!

Remarks

Returns 'true if nuwlis a word and 'false
otherwise.

Examples
The following procedure tests if its input is a word:
1: build 'checkword

checkword 'object
if wordg :object [say 'wordl [say [nhot wordl]

1: make 'item1 'patsy
1: checkword :item1
word

1: make 'item2 [1 2 3 4]
1: checkword : item2
not word

1: checkword 3
not word

Reference.202



RM Logo

wrap

Remarks

Makes the turtle wrap around the screen.

If it is sent off the right hand edge of its field, it
reappears on the left; if it is sent off the top, it
reappears at the bottom. The turtle’s drawing heading
always remains unchanged.

Examples

12 cs

1: wrap
1: Lleft 45
1: forward 1000

A\
R

Associated Primitives

fence, fenceq, nowrap, wrapq

Reference.203



RM Logo

wrapq

Remarks

Returns 'true if the wrap primitive has been used,
otherwise it returns 'false.

Associated Primitives

fence, fenceq, nowrap

Reference.204



RM Logo

writefilec nw filename
wic

Remarks

Writes the first character of nw to the named file,
which must have been opened for output.

The character is joined with the previous character
output.

wfc returns ' true if the character is successfully
written and ' false otherwise.

Example

1: unless writefilec 'b 'myfile.dat
[say [not writtenl]

Associated Primitives

closefile, outfile, outfiles,
writefiled, writefilel

Reference.205



RM Logo

writefiled nwl filename

wid

Remarks

Writes nwl to the named file, which must already be open

for output. The data is written in the format used by
print.

'true is returned if the data is successfully written
and 'false otherwise.

Example
1: unless writefiled 'rhubarb 'myfile.dat
[say [notwrittenll]
Associated Primitives

closefile, outfile, outfiles,
writefilec, writefilel

Reference.206



RM Logo

writefilel list filename

wil

Remarks
Writes list to the named file, which must already be open
for output. The data is written in the format used by
say and is followed by a carriage return.

The value ' true is returned if list is successfully
written, and ' false otherwise.

Example

1: unless writefilel L[rhubarbl 'myfile.dat
[say [notwrittenl]

Associated Primitives

closefile, outfile, outfiles,
writefilec, writefiled

Reference.207



RM Logo

XCor
Remarks
Returns the turtle’s current x coordinate.
Examples
1: cs
1: print xcor
0
1: setpos [100 501
1: print xcor
100
~ Associated Primitives

pos, setpos, setx, sety, ycor

Reference.208



RM Logo

xorab

Remarks

Stands for exclusive or. Returns ' true if either g or

b is true and the other false; otherwise it returns

"false. The table below shows xor working with a and
b values:

a b xor ab
"'false 'false 'false
"false "true 'true
true 'false 'true
"true 'true 'false

Example

This procedure acts like a simple two-way light switch.
1: build 'lights

Lights 's1 's2
result if xor (:s1 = 'up) not (:s2 = 'up)
[Clightson]l]l[CLightsoffl]

If both switches are up or down then the lights are off.
If they are in different positions the lights are on.

1: say Llights 'up 'up
Lights off

1: say Llights 'up 'down
Lights on

Associated Primitives

both, either, not
Reference.209



RM Logo

ycor
Remarks
Returns the turtle’s current y coordinate.
Examples
1: cs
1: print ycor
0
1: setpos [100 501
1: print ycor
150
Associated Primitives

pos, setpos, setx, sety, xcor

Reference.210



RM Logo

#
list # number

Remarks
Returns the number th element of list.

# can also be used after make to change the value
of an element of a list.

Examples

1: make 'notice [NO SMOKINGI]
1: say :notice # 2

SMOKING

1: say :notice # 1

NO

1: make 'notice # 2 'eating
1: say :notice
NO eating

The following example uses # recursively to handle
simple structured data.

1: make 'marks [[Maths 8] [Chemistry 5]
CEnglish 711

1: print :marks #3 #2

7

Reference.211



RM Logo
Logo Keywords

Logo recognises special words which are not primitives.
These keywords are:

case
default

These are part of the branch primitive.

until
This is part of the do...unt1i L primitive.

"true
'false

These are the boolean data types recognised by Logo.
Logo Signals

The Logo system throws signals which you need to catch

within your program otherwise your program may come to a
stop.

The system signals are:

cancel, endfile, error, fence, touch,
touchturtle, escape

and can be caught in your program using catch. For
example:

catch 'endfile [say rfc 'myfilel

More information on the system signals can be found in
chapters § and 12.

Reference.212



RM Logo
Special Logo Characters

Logo recognises various characters as having a special
effect. Their uses are detailed in the associated
primitive descriptions. The characters are:

:  colon
Precedes a variable name and returns its contents.

; semi-colon
Precedes a comment which is not part of the program.

1= tag
Receives control from a goto command. See goto.

C 1 square brackets
The contents inside the brackets are a list.

' quote mark
Indicates that what follows is either a name or a
word.

( ) round brackets
Ensures a specific order of evaluation.

\  backslash
The subsequent character is to be treated as an
ordinary text character or a hexadecimal value.

* asterisk
For multiplication. Seemultiply.

+  plus

For addition. See add and join.
- munus

For subtraction. See subtract.

Reference.213



RM Logo

/

1

Reference. 214

slash
For division. Seedivide and share.

vertical bar

eijther and xor.

up arrow
For exponentiation. See power.

tilde
Symbol for ‘not’. See not and unequalq.

dollar
Specifies Logo’s definition of the following name or
word is to be used. See chapter 15.

hash
Counts the elements in a list. See the # primitive
which is the last primitive described.

equals
Tests for equality.

less than
Tests for one value being less than another.

greater than
Tests for one value being greater than another.

greater than dash
Gives contents to a variable. See the make.

percentage
Returns the remainder of a division. See remainder

ampersand
Joins expressions, words and lists. See both and
sentence.



Index

#, list pointer 95
$ 153
1: prompt 14

Absolute graphics 2.8
alias 34

amongg 95

and 111,52
Arctangent 8.2
Arithmetic  1.14
Arithmetic operators 1,14, 8.2
asserted 102
assertions 10.2
atan 82

await 135

Backslash, use 1.15
backward 2.2
begin 133

286
bload 163
Border colour 25
branch...case 48
bug 128
build 1.7 44
butfirst 91,94
butlast 51,94

catch 59 123
Characters

lower case 1.12
punctuation 113
uppercase 1.12
classified 104
clean 2.2
cleantext 2.2
clearscreen 186
Closing files  11.2
Colon (dots), use  1.15,3.3
colour 26
Colour names 2.7
Colour numbers 2.6
colours.lgp 27
Comments in Logo 1.16
Conditionals 53
consult 63
Control, flow of 51
copy 124,155
cos 8.2
Cosine B2

count 986
cursor 7.2

Index

Database
building a simple one 10.3
building sophisticated 106
inferring values 10.10
retrieving information 104
Debugging programs  12.3
define 35
defineshape 2.4
Demanstration files 1.5
deny 10.2
Destructive overdrawing 2.7
Directing the turtle 2.2
directory 64
Disk directory 6.4
Disk problems 114, 11.12
Disks and files
introduction  11.1
do...until 54
do...while 54
Dots (colon) 1.15, 33
dribble 63
Driver 16.1, 164
drop 2.2
dump 129

Edit mode

entering 1.7,19
leaving 19
Editwindow 1.8
Editing

alist 45
leaving an edit 4.5
with function keys 4.2
with numeric keys 4.3
Editing and making errors 4.6
editlist 986
Editor 4.1
Editor use out of Logo 156
edlist 4596
Empty word 9.2
emptyg 96
erasefile 64
Error Handling 121
esh.def 25

exit 15

explode 96
Extension files

error exit 168
format 166
preparing to write  16.3
reading inputs  16.7
returning lists 168
returning results  16.8
Extensions to Logo 161



Index

fence 2.2

Files

changingdata 116
closing 11.2
creatinga simpleone 113
deleting 6.4

disks, introduction 11.1
loading 15

names 11.10

news 154

opening 11.2

reading items  11.2. 115
renaming 6.4
temporary 11,10
unsuccessful writingto 114
writing items  11.2
find 155

first 91,94

Floor turtle driver
preparing to write  16.3
writing your own 164
Floor turtles  16.1
Flow of contral 5.1
forever 5.2

forward 2.2

frac 83

get 155
goodbye 15

goto 55

Graphics 2.1
Absolute 28
areaonscreen 2.2
mode 14

turtle 2.2

it 53

implode 96

Infix operators  1.14, 8.2
Input and Output 7.1
Input from the Keyboard 7.3
Inputs

to a primitive 1.7

to a procedure 3.2

int 83

join, ++ 92

keep 155

key 7.3

Keyboard mistakes 12.1
keyg 7.3

Label 7.2

last 91,94
Leaving an edit 4.5
Lift 2.2

List pointer (#) 95

listfile.def 119
Lists 1.1
elements 112,93
of procedures 35
load 15 1565
Loading
files 15
ready-made extensions 16.3
turtle driver 16.2
Logo
leaving 15
leaving a procedure 15
Primitives 1.6
procedures 1.7
startingup 1.3
Logo editor 4.1
Logo extensions 161
writing your own 165
Logo files
loading 15
maintenance 64
running 15
saving 18,155
Logo graphics 2.1
Logo Microworld  1.16
preserving 154
settingup 151
standard 155
Logo prompt 1.4, 131
Logo signals
'error 510
'fence 510
Long linesof Logo 4.6
Lower case characters 1.12

make 1.13
memberg 95
Microworld  1.16, 15.1
preserving 154
settingup 15.1
Moving Pictures 14.4
Multiple turtles 141
example 144

Names 1.12
MNegative numbers 8.1
News file 154
news.lgo 154
Non-destructive overdrawing 2.7
Numbers 114, 8.1
positive and negative 8.1
precision 81
random 83

objects 10.2
Opening files  11.2
Operators, arithmetic  1.14, 8.2



parallel 132
Parallel processing 131
example 138

mutual exclusion 133
synchronization 134
Parentheses 1.15

pc 26

pennormal 28
penreverse 2.7

pick 83

po 6.1

Pointers in lists (#) 95
pos 155

Positive numbers 8.1
Prefix operators  1.14, 8.2
Primitives 16
abbreviations 1.10
inputs 1.7

print 7.1

Printing on screen 71
Procedures 1.7, 3.1
aslists 35

building 31

inputs 3.2

leaving a running procedure 15
listing those available 3.1
renaming 34
returning results 3.3
scrapping 3.1
Properties 101
examining values 10.2
Punctuation characters 113
putfirst, +> 94
putlast, <+ 94

Quotation mark in Logo  1.12,1.15

random 8.3

Random numbers 83
readfilec 119
readfiled 16

reading from files 11.2
Recursion 55

rename 34

renamefile 64
Renaming files 64
Renaming procedures 3.4
repeat 5.2

Repeat last line of input  12.2
Repetition 5.2

replay 63

Replaying command sequences 6.3
rest 9.1

Results from procedures 3.3
RM Logo
demonstration files 15
Disk 1.2

Files 1.2

RM Logo Editor 4.1

Round brackets 1.15

Index

save 6.2,155
Saving work on disk 6.2
say 71

scrap 3.1,6.2

setbg 26

setc 26

setcursor 7.2

setdir 23

setpc 26

setpoint 28

setpos 28

setshape 25

setspeed 2.3

setx 28

sety 28
Simple input and output 7.1
Simultaneous drawing of shapes 14.3
sin B2
Sine 8.2

single 134
Spaces in Logo names 1.13
Special characters 1,14
Square brackets 1.15
Start-up (standard) 155
start.lge 155
Starting up

MNetwork Nimbus 1.3
Standalone Nimbus 1.3
Symbolic dumps 129

Tag 55
tan 82
Tangent B.2
tell 142
Temporary files  11.10
text 3562
textscreen 16
throw 59,123
Throwing and catching control 59
titles 31,61
toldg 155
trace 126
Turtle
changing shape 24
drawing heading 2.2
floor 16.1
more than one on screen  14.1
movement and speed 2.3
movement heading 2.3
shape 14,24,28
Turtle driver  16.1
loading a ready-made 16.2
preparing to write 16.3
writing your own 164
Turtle graphics 2.2
type 7.2

unbload 163

unbug 129

untrace 126

unwalk 126

Upper case characters  1.12



Index

value 113
Values 101
examining 10.2
vanish 14.2

walk 125
Word, empty 9.2

Words 1.1, 91
Workspace 6.1
manipulating contents 6.1
Writing to files  11.2

XOR plotting 2.7



ﬁ- ™\ |1.\.J|J\./. Yo v \./ . TN R N Y 5N el a
!

|



	Front Cover
	Errata
	Title
	Preface
	Contents
	Part 1 : Concepts
	1: Getting Started
	2: Graphics
	3: More On Procedures
	4: Using the Editor
	5: Changing the Flow of Control
	6: Managing Your Workspace
	7: Simple Input/Output
	8: Arithmetic
	9: Words And Lists
	10: Organising Information
	11: File Handling
	12: Error Handling and Debugging
	13: Parallel Processing
	14: Using Multiple Turtles
	15: Setting Up A Logo Microworld
	16: Writing Extensions To Logo

	Part 2 : Reference
	a
	b
	c
	d
	e
	f
	g
	h
	i
	j
	k
	l
	m
	n
	o
	p
	r
	s
	t
	u
	v
	w
	x
	y
	#
	Logo Keywords etc

	Index
	Back Cover

