
.----.
• •• •

Discrepancies in the Beginning RM Logo Manual

Page 1.6
In the table of colours, the colour for number 0 should be
black, not white.

Page 7.1
The third line of the procedure ray should be backward 50.

Page lOA
If you type: add 3 20 50 30, the result 100 will be printed
on the screen because it is not wanted by another procedure.

Page 10.5
The final line on the page should be:
repeat (add 3 20 50 30) [square 50 right 40]

Page 13.3
first returns the first digit of a number. rest returns all but the
first digit of the integer part of a number.

Page 17.2
The third line of the procedure in project 3 should be:
right :angle

Page 18.3
The final line of the procedure randwd should be:
result :listn # pick count :listn

111~1~[lllil~ll~llli~~1
N35384

• •
• BEGINNING RM LOGO •

THE HOMERTON LOGO MANUAL

• •

PN14393

Beginning AM Logo
The Homerton Logo Manual
PN 14393

Hilary Shuard is Deputy Principal of Homerton College.

Fred Daly is Director of Computing and Curriculum Development at
Homerton College.

Homerton College is the College of Education in the University of
Cambridge.

The Homerton Logo Manual was first written in 1983 as part of the
Homerton Logo Project. It has been used with a range of in-service and
pre-service courses with teachers who have little or no experience of
computers. Through these courses and with the helpful advice of others,
the manual has been successively refined and augmented to take
account of the developments in technology.

Copyright @1985, Hilary Shuard, Fred Daly

All rights reserved. Although customers may make copies of this book for
their own use, you may make no other form of copy of any part of it without
our written permission.

Because our policy is to improve our products and services continually,
we may make changes without notice. We have tried to keep the
information in this book completely accurate, but we cannot be held
responsible for the consequence of any errors or omissions.

Customers comments are of great value to us in improving our computer
systems, publications and services. If you would like to make any
comments, please use the reply-paid form at the back of the Handbook.

Edited by Nicola Bourdillon and Cathy M. Hand.

Illustrations by Jane A. Hannah and Inkwell Studios, Bicester, Oxon.

Typeset by direct transfer from Research Machines Network to
Linotron 202 at Oxford Publishing Services, Oxford.

Printed by The Hazell Press, Wembley.

Research Machines Limited, Mill Street, Oxford OX2 OBW.
Tel: Oxford (0865) 249866.

Introduction

This book is intended to show beginners how to use Logo in
a satisfying way. It is structured to build your
confidence that you understand the major features of Logo.

When Seymour Papert developed Logo, he wanted to provide a
rich environment for children to explore, both giving them
a knowledge of computer programming, and fascinating the
beginner.

Some readers of this book will be teachers who are working
through Logo, preparing to use it with children. We do not
suggest that you introduce children to Logo in the
structured way used in this book. We recommend a much
more exploratory approach, encouraging children to set and
solve their own problems, introducing new features of Logo
from time to time. Use this book to help children find
easier ways of tackling their projects.

Other readers will be learning Logo for fun, or for a
satisfying introduction to the power of computer
programming.

Whoever you are, we hope you will have fun as you explqre
Logo.

An RM Logo Reference book is available from Research
Machines, PN 14394. It gives an introduction to using
RM Logo on Nimbus and a reference section of
Logo primitives listed alphabetically; special Logo
characters; Logo keywords and signals. A quick reference
card is also included.

Contents

Contents

Chapter 1: Using Logo for Drawing Pictures
Getting started

On a Network Nimbus
On a Standalone Nimbus

Some Primitive Commands
Abbreviated Primitives
Raising and Lowering the Pen
Typing Errors
Projects
Rubbing Out

Chapter 2: Text and Numbers
Printing Titles
Project
Using Logo as a Calculator

1.1
1.1
1.1
1.3
1.5
1.6
1.8
1.8
1.8

2.1
2.2
2.2

Chapter 3: Repeats
Squares
Project
Repeating Squares
Inputs
Projects
Fencing in the Turtle
Project
Nested Repeats
Project

3.1
3.2
3.2
3.3
3.3
3.4
3.43.4
3.4

Chapter 4: Procedures
Teaching Nimbus
Extending Logo's Vocabulary
Making Logo Remember
Saving your Procedures on Disk
Projects
Stopping a Procedure

4.1
4.1
4.3
4.44.4
4.4

Contents

Chapter 5: Editing
Editing Your Procedures
Steering the Cursor
Changing the Text
The Function Keys
Projects
forever

5.1
5.1
5.2
5.25.3
5.4

Chapter 6: The Graphics and Text Screen
Hiding The Turtle
Screen Modes
Your Workspace
Projects

6.1
6.1
6.26.3

Chapter 7: Recursion
What Recursion Does
Thinking About Recursion
Projects

7.1
7.1
7.2

Chapter 8: Polygons, Stars and Circles
Using Recursion
Project
Heading
Project
Circles
Projects
Drawing a Circle with Given Radius
Projects
Multiple Turtles and tell

Chapter 9: Variables
Varying the Size of a Drawing
Project
Procedures Taking Inputs
Project
Colons and Quotes
Local Variables
Coordinates
Heading
Project

8.1
8.1
8.1
8.2
8.2
8.28.3
8.4
8.5

9.1
9.1
9.2
9.29.3
9.5
9.6
9.7
9.8

ii

Contents

Chapter 10: make, say and result
make
Project
say
Variables in Non-Graphics Procedures
Projects

10.1
10.2
10.2
10.3
10.6

Chapter 11: More Commands Using Numbers
Prefix Arithmetic
Other Arithmetic Commands
Integer Divsion
pick and random
Projects
if ... and Tests

11.1
11.2
11.2
11.3
11.4
11.4

Chapter 12: Words and Lists
A Larger Project
Input from the Keyboard
Lists
Words

When to use Quotes
When not to use Quotes

Project
Variables and their Values
Projects
Laying out Text on the Screen
Projects

12.1
12.2
12.3
12.4
12.4
12.4
12.5
12.6
12.7
12.8
12.9

Chapter 13: Looking More Closely at Lists
Further Development of Younglogo
Tearing Lists Apart
first and rest
Project
Other Commands to Manipulate Lists
List Pointers

13.1
13.1
13.2
13.3
13.4
13.5

iii

Contents

Chapter 14: SingleKeyInput
The Primitive key
Project
keyq
do[...] until ...
while
Projects

14.1
14.4
14.4
14.4
14.6
14.7

Chapter 15: Boolean Primitives
The Primitive not
both and either
xor
Commands using true or false
Building your own Tests
Projects

15.1
15.2
15.4
15.4
15.5
15.6

Chapter 16: Multiple Turtles
Introduction
Project
vanish and turtles
Parallel Processing
Projects

16.1
16.2
16.2
16.3
16.4

Chapter 17: More about Variables
Polygons with Recursion with Variables
Polyspirals
Projects
Local Variables
Levels
Changing Colours
Project

17.1
17.2
17.2
17.3
17.5
17.9
17.9

Chapter 18: Building up Lists
A Random Sentence Generator
putfirst and putlast
Choosing a Random Member of a List
Making a Random Sentence
Projects

18.1
18.2
18.3
18.4
18.4

iv

Contents

Chapter 19: More about Recursion
Drawing a Tree
Tracing through Programs
Variations on tree
Snowflake Curves
Project

19.1
19.2
19.3
19.3
19.7

Chapter 20: List of Logo Primitives
Graphics Commands
Numerical Commands
Building Procedures
Debugging
Words and Lists
Conditionals
Control
User Input and Output
Variables
Information and Files

20.1
20.2
20.2
20.2
20.3
20.3
20.3
20.4
2004
2004

v

Drawing Pictures

Chapter 1
Using Logo for Drawing Pictures

Getting Started

Your Nimbus is either a Standalone or Network Nimbus.
If you are unsure which your Nimbus is, look at the back.
A Network Nimbus has a cable attached to the socket marked
'Network'.

On a Network Nimbus

We assume everything has been prepared by the Network
Manager for you to use RM Logo, and you can join the steps
for a Standalone Nimbus where they specify you type:

Logo <ENTER>

If you have a copy of the RM Logo Disk, you can treat your
Network Nimbus like a Standalone and follow the steps
below.

On a Standalone Nimbus

Switch on the computer and the monitor. The screen
will say We Lcome and then tell you it is looking for
an operating system.

The operating system it is looking for, together with
the Logo language, is on the RM Logo Disk, so place
this in the disk drive (the left-hand drive if you
have two drives). One corner of the disk has an arrow
on it, to show which way the disk goes in. The arrow
should be top left as you put the disk in, and there
will be a satisfying firm click as the disk fits
snugly in to the drive.

1.1

Drawing Pictures

After a few moments, Nimbus will ask you for
the date. To get into Logo quickly, ignore
this by simply pressing the <ENTER> key. It
is towards the right hand side of the keyboard.

In this book, the sign <ENTER> means
pressing the <ENTER> key.

G
I \

Next, ignore Nimbus's request to tell it the time by
pressing <ENTER> again; you are then ready to load Logo.
To do this, merely type:

logo <ENTER>

The red light on the disk drive shows that Logo is being
copied from the disk into the computer. When Logo has
finished loading, you see the following screen and can
start using Logo.

1:_

1.2

Drawing Pictures

Some Primitive Commands

The Logo language can program Nimbus to do many tasks.
Young children start by using Logo to make the computer
draw pictures. Adults can use Logo to program Nimbus to
carry out complex tasks, just as they might use another
computer language such as Basic or Pascal.

When you enter Logo, Nimbus already understands a few
words of English. You can use these words to tell the
computer how to draw pictures. Type:

cs <ENTER>

The command cs stands for clear Screen.

Note:

• In this book, Logo commands are written in a
different type.

• As you can type more in a line on the screen than can
be written in a line in this book, any lines indented
in this book are a continuation of the line above.

• Nimbus writes them on the screen in lower-case
letters, and you should also use lower-case letters.

You should now see an arrow in the middle of the screen
pointing upwards, and a rectangular border round the edge
of the drawing screen. The arrow is called the screen
turtle (turtle for short). Below the drawing screen is the
prompt:

1 :

which shows you are talking to turtle number 1. The prompt
always shows when Logo is waiting for you to type
something. You are now ready to command turtle number 1
(which carries a pen with it) to draw on the screen.

1.3

Drawing Pictures

Nimbus understands the following commands, and can
instruct the turtle to obey them:

forward
backward
right
Left
Each of these commands must be followed by a number. Type:

forward 50 <ENTER>

Remember that the zero key is among the number keys on the
top row of the keyboard; it prints on the screen as O. Do not
confuse it with the letter 0, or you will get an error message.

Experiment with some commands - make the turtle draw
some pictures. Each command must end with <ENTER>.

To clean the screen and start again, use cs. Other useful
commands for starting again are:

cLean
which wipes away the drawing, but leaves the turtle where
it is, and:

centre
which sends the turtle back to its starting point without
cleaning away the drawing.

The screen turtle is the little arrow which does the
drawing. It is an abstract screen version of the floor
turtle. The floor turtle is a small computer-controlled
robot which Seymour Papert used in his work with children.
It carries a fibre-tipped pen, and it understands the Logo
language. It draws pictures on paper on the floor, just as
the screen turtle draws pictures on the Nimbus screen.

1.4

Drawing Pictures

Young children feel more comfortable with the floor
turtle, but the floor turtle and the screen turtle can do
exactly the same things.

Children as young as 4 or 5 years old can use the floor
turtle to make drawings, using only the letter keys <F>,
, <R>, <L> to command the turtle. Thes.eone-key-press
abbreviations are not available on RM Logo when you switch
on; but it is possible to program them (see Chapter 12).

Abbreviated Primitives

It is tiresome, particularly for non-typists, to have to
type in the complete command every time, and so most
versions of Logo allow abbreviations. In RM Logo some of
the abbreviations are: .

fd forward
bk backward
rt right
lt left
cl clean
ct centre
Try:

fd 60
rt 90
fd 60

1.5

Drawing Pictures

An alphabetic listing of all Logo primitives and their
abbreviations are in the second part of the RM Logo book.

Raising and Lowering the Pen

Here is a simple drawing of a face.

-1-You would need to lift the pen up
from the paper after drawing one eye,
so as to move to the other eye. When
the turtle is drawing on screen, the
commands L ; f t and d rep behave exactly as if the floor
turtle were using them on the floor. L ; f t lifts the pen,
and enables the turtle to move without drawing a line;
d rep lowers the pen.

The turtle has a good range of coloured pens (either eight
or sixteen colours depending on your colour monitor). The
command setpc stands for set pen colour and
makes the turtle draw with different coloured pens. setpc
must be followed by a number from the following table:

o = white
1 = dark blue
2 = dark red
3 = dark purple
4 = dark green
5 = dark sky blue
6 = brown
7 = light grey
8 = dark grey
9 = light blue

10 = light red
11 = light purple
12 = light green
13 = light sky blue
14 = yellow
15 = white

1.6

Drawing Pictures

When you first enter Logo, the pen colour is 15.

If you have a black and white monitor, colours come out as
various shades of grey. The colours of the turtle and the
background can also be changed. Type these commands:

setpc 11
setc 2
setbg 1

Nothing happens until you type cs. Then you get a dark
blue screen with a red turtle sitting in the middle of it.
If you now type forwa rd 50 you should get a pinkish purple
line. Experiment to find some more tasteful colour
combinations.

In general, you should use:

setpc n ~--------.J
to change the colour of the turtle's pen;

setbg n --------_-..1
to change the colour of the background. The command:

setc n

changes the turtle's colour. setbg and setc use the
same colour numbers as set pc, except that setbg a sets
the background to black, and setc a sets the turtle to
the colour of the background, making it invisible. The
command setbg does not operate immediately; you have to
follow it by cs to make the background colour change.

1.7

Drawing Pictures

Typing Errors

Press the <BACKSPACE> key to rub rrr=J1l
out the last character you typed. lJ9.J

Projects

1. Draw some pictures. Enjoy yourself and do not rush
this stage; the Logo environment was originally
designed to enable beginners to engage in free
exploration. Through this exploration they 'learn
without teaching'. The possibilities are immense - try
some of them.

2. Draw a square, an equilateral triangle, a regular
hexagon.

Rubbing Out

Computer programs, when first made, nearly always contain
bugs; the program does not do exactly what you intended.
If you need to debug your drawings, when you have drawn a
line in the wrong place, you can rub it out by changing
the pen for a rubber. Type:

rubber

Then you can use the command ba c kwa rd to rub out the line
you drew wrongly. You will arrive back at the point where
you started to draw a line in the wrong place.

To change to a drawing pen again, use a command such as:

setpc n ~--------.J
and the turtle is ready to draw, using the pen colour
corresponding to the number. For example, if you type
setpc 14 you should get a yellow line.

1.8

Text and Numbers

Chapter 2
Text and Numbers

Printing Titles

Logo can be used to do many other things as well as
drawing pictures. You can use it to write on the screen;
in this way, you can give your pictures titles. Draw a
picture, and then type:

LabeL [Drawn by Jane]

The words Dr awn by Jan e appear on the screen near where
the turtle is. The square brackets [] are very important:
they enclose the list of words used by the command La be L.
The list of words can be varied at your choice.

Lists are an important feature of Logo; in the command you
have just typed, the expression:

[Drawn by Jane]

is a list containing the words Drawn, by and Jane. A list
is always enclosed in square brackets [].

Experiment with using the command Labe L to write labels on
your pictures; don't forget the square brackets. The
command Labe L is always followed by a list:

2.1

Text and Numbers

Project

1. The turtle takes very small steps as it moves around
the screen. Draw a turtle ruler which measures in
turtle steps on the screen, like this:

o 50 100 150 200
JC::::C::::C::::::iI! __ I====::iI1 __ I

You might use different colours as you draw the ruler.

Using Logo as a Calculator

Logo can also do arithmetic calculations, so that you can
use Nimbus as a calculator. The symbols for addition,
subtraction, multiplication and division are very like
those used in ordinary arithmetic. The arithmetic symbols
are + (add), - (subtract), * (multiply), / (divide).

However, the equals sign is not used in Logo calculations.
Instead of writing 3 + 4 =, you write:

say 3 + 4 <ENTER>

Logo should respond by printing 7. Logo does not even
complain if you omit say and merely write:

3 + 4 <ENTER>

Even if you do this, Logo will still obligingly print 7.

You can also do arithmetic within turtle graphics
commands. For example, you can use commands such as:

forward (30 + 40) or backward (110 -40)

(The brackets are optional, but they can make your
commands easier to read.)

2.2

Text and Numbers

A command such as 10/ 3 works out the result of the
division as a decimal number (correct to 15 significant
figures!).

Explore the arithmetic abilities of Logo. If you need more
space for calculations on the screen, and do not want to
use the turtle for the time being, type:

textscreen abbreviation ts

This enables the whole screen to be used for calculations.
To return to the drawing screen, use cs.

2.3

Repeats

Chapter 3
Repeats

Squares

When you drew a square, you probably did something like
this:

forward 50
right 90
forward 50
right 90
forward 50
right 90
forward 50
right 90

Notice these three points:

• You may have omitted the last right 90.

Its only purpose is to finish the square with the turtle
facing the way it started. This is a good idea for more
complicated geometric drawings; you should develop the
habit of finishing geometric drawings with the turtle in
the same place and facing the same way as it started -
that way, drawings combine more easily.

• Your square may have turned Left rather than right,
but in either case the turning number was 90.

Turning numbers are measured in degrees. Even young
children who do not know about degrees can find out for
themselves that a turning number of 180 makes the turtle
face the opposite direction, and that a turning number of
90 produces a right angled turn.

3.1

Repeats

Project

The turtle steers the same way as a person; it measures
the turn starting from the direction it is facing.

\i9ht60

This makes it possible for children who are starting to
learn Logo to 'play turtle', steering one another by giving
turtle directions. People who cannot decide how to draw
something can often walk through what they want to do .

• The forwa rd number in drawing a square gives the side
of the square, measured in turtle steps. A turtle step
is very small.

1. Measure the screen in turtle steps. How tall and how wide
is it?

Repeating Squares

3.2

In drawing a square, you typed:

forward 50
right 90

four times. To avoid this, you can use the repeat command.

Inputs

Projects

Repeats

These commands draw the square:

repeat 4 [forward 50 right 90]

Different commands require different numbers of inputs.
The cs command has nothing following it; it has no inputs.
The command forwa rd needs one number following it, so you
have to write something like:

forward 50

forward has one input, which must be a number.

The repea t command takes two inputs:

• the first input is a number, telling the number of
repeats

• the second input is a list, the list of instructions
which are to be repeated

In Logo, lists are always enclosed in square brackets.
The list which was used as an input to repeat was the list
of instructions:

[forward 50 right 90]

2. Use repea t to draw a square, an equilateral triangle,
a regular hexagon.

3. Draw some more regular polygons.
3.3

Repeats

Fencing in the Turtle

Project

When the drawing gets too big for the screen, the turtle
is lost from view. If you don't like this effect, you can
change it by the command:

fence

Then you will get an error message if the command would
take the turtle out of the screen area. The command:

nofence

enables the turtle to go anywhere again. In this mode, the
screen is a window on a boundless drawing surface; the
turtle goes on drawing when it is off the screen, but you
can no longer see it.

4. Draw some regular polygons with a great many sides.

Nested Repeats

Project

3.4

Commands to repeat something can even be nested within
each other . Try this:

repeat 8 [repeat 4 [forward 40
right90J right45J

5. Explore patterns made by turning some of your regular
polygons round repeatedly.

Procedures

Chapter 4
Procedures

Teaching Nimbus

When you enter Logo, it already understands a few
commands, such as forward, cs and repeat. It always
remembers these commands, which are called Logo
primitives. Whenever you ask it to carry out a combination
of these commands, such as:

repeat 3 [forward 50 right 120J

it draws what you ask, and immediately forgets the
sequence of commands you gave it.

However, one of the most powerful features of Logo is its
ability to learn and remember new commands. To teach Logo
a new command, you have to define that command by telling
Logo how to do it (using what it already knows).

Extending Logo's Vocabulary

We shall teach Logo how to do square. A definition starts
with the word bui Ld.

Type:

bui Ld

The screen changes completely. You have entered the editor
and Logo is ready to learn the definition of squa reo You
will see that Logo has already written the word squa re on
the first line of the editor.

4.1

Procedures

4.2

Now type in the definition of squa re:

repeat 4 [forward 50 right 90]

The screen will look like this:

FKEYS "'LR~ .uo..- # COMMANDS *
normal char line Swap case [menu

shift word page Ins marker of

alt line text Go to mark more]

square
repeat 4 [forward 50 right 90]

MOV

~~~
DELrnDO
CMO

88J
The appearance of the editor screen reminds you that you
are making a definition. Beginners are often puzzled by
this, because they expect the turtle to draw at once when
they type in the commands. What you are doing now is
rather like writing the commands down on paper before
drawing the picture.

Around the border of the editor screen are instructions
for using the function keys as an alternative way of
moving the cursor around the editor screen. These keys are
marked <F1> to <F10> and are found at the left of
the keyboard. Experiment with them!



Procedures

Making Logo Remember

To exit from the editor, press <ESC>,
the key at the top left-hand corner
of the main block of keys.

Logo immediately stores the procedure for squa re in its
memory, and returns to the drawing screen. When you have
taught Logo the procedure for squa re, you can type:

square

and Logo will draw the whole square, starting wherever the
turtle is. You can teach Logo as many procedures as you
like, and it will remember them all. Its language grows
under your control.

In the next chapter, you will find out how to ed ita
procedure which has a bug in it, and does not do what you
want it to do. For the moment, you can get rid of the
procedure that does not work by typing:

scrap 'square

The command s c rap deletes the named procedure from the
computer's memory. Do not omit the quotation mark' from
, squa re; Logo will complain if you do. A quotation
mark tells Logo that what is coming is a name or word; you
are asking Logo to scrap the procedure whose name follows.

You can also s c rap some of your procedures by telling Logo
the list of procedures that you no longer want, using a
command such as:

scrap [square triangLe]

In this case, the names of the procedures do not have
quotes. The square brackets [ ] signal to Logo that a
list of words is enclosed in the brackets.

4.3



Procedures

Saving your Procedures on Disk

Logo will remember your procedures until you turn the
computer off. If you want to save them for later use, you
should save them on disk.

To save procedures on disk, all you have to do is to type:

s a vel filename

You can use any name for the set or file of procedures you
are saving. This command saves all the procedures you have
taught Logo. To get your procedures back at the beginning
of the next session, use the command:

Load I filename

Projects

1. Teach Logo the procedures squa re, t r iang Le,
hexagon.

2. Draw a house. Draw a st reet of houses.

3. Draw anything you like.

Stopping a Procedure

To stop a procedure while it is executing, press
the <ESC> key.

4.4



Chapter 5
Editing

Editing Your Procedures

Editing

You often want to change a procedure when you have seen
what it does. The Logo editor makes this very easy.

Define a procedure, then type:

edit

You are now in the editor, and the text of your procedure
can be changed on the screen.

Steering the Cursor

The four arrow keys on the bank of number keys in the
right-hand block steer the cursor round the text.

action

moves it to the left

moves it to the right

key

5.1



Editing

moves it down one line

moves it up one line

Changing the Text

To delete a character, move the cursor
under the character and press the
<DELETE> key.

Or use the <BACKSPACE> key to
delete the character before the
cursor.

[ [QJ ]
(tJJJ

To insert characters into your text, move the cursor to
the exact position where you want the new characters, and
type them in. Notice that everything else moves over to
make room from them, and nothing is lost.

Sometimes you need to insert a new line of text. You can
type it in at the appropriate place, and let the next line
move over, or you can create an empty line by moving the
cursor to where you want the line, and pressing <ENTER>.

When you have finished editing, come out of the edit mode
by using the <ESC> key.

The Function Keys

The function keys in the left-hand bank of keys on the
Nimbus can be used to control some operations of the Logo
editor.

5.2



Projects

Editing

Some of the more useful actions are:

<Fl> moving the cursor one character to the left

<F2> moving the cursor one character to the right

These keys can also be used with the <SHIFT> and
<AL T> keys, which make their actions increasingly
effective. <SHIFT> and <Fl> or <F2> move the cursor
one word to left or right, <ALT> and <Fl> or <F2>
move the cursor to the beginning or end of the line.

<F3> moving the cursor one line up

<F4> moving the cursor one line down

Again, using <SHIFT> or <AL T> produces more drastic
movement.

The keys <F5> and <F6> delete:

<F 5> deleting the character left of the cursor

<F6> deleting the character under the cursor

1. Draw some stars. Try building a procedure star:

star
repeat 8 [forward 80 right 135]

Change the angle and see what happens. You may need to
change the number of repeats as well.

2. Some stars turn out to be polygons. Find some. Draw a
regular pentagon. Draw a five-pointed star.

5.3



Editing

forever

5.4

3. How far has the turtle turned when it has finished
drawing a polygon? How far has it turned when it has
finished drawing a star? Look for patterns.

4. The turtle has drawn a closed path when it is back at
the same spot facing the same direction as when it
started. What can you say about the total turn in a
closed path?

Sometimes it is difficult to decide how many repeats are
needed to draw a star. This problem can be avoided by
using forever.
For example, the command:

forever [forward 80 right 115]

draws a star with a great many points, and continues to go
over and over it for ever. The procedure can be stopped by
pressing <ESC>.



Graphics and Text Screens

Chapter 6
The Graphics and Text Screens

Hiding the Turtle

When you draw a picture, you may feel that the turtle is a
blemish on the finished work of art. It can be hidden by
uSIng:

hideturtle abbreviation h t

and revealed again with:

showturtle abbreviation s t

Screen Modes

Logo has a graphics mode and a text mode. When you first
load Logo, the screen is in text mode, and the whole of it
is available for text. When you type cs, the screen goes
into graphics mode and displays the drawing screen,
together with six lines which can be used for text at the
bottom of the drawing screen.

r

line

20
line ~

25 '-
25

------040 ------'80
column column

graphics mode text mode

6.1



Graphics and Text Screens

Sometimes you want to see a lot of text at the same time.
The command:

textscreen abbreviation t s

moves Logo into text mode. In text mode, you can clear the
screen with the command:

cleantext abbreviation ctx

To get back to graphics mode, use cs.

Your Workspace

When you have been working for a little time, you will
have taught the computer several procedures, such as:

house
square
triangle

Your procedures are stored in an area of the computer's
memory called the workspace. You can see the titles of all
the procedures in your workspace by using:

titles

This shows a list of titles of all the procedures you have
taught the computer.

6.2



Projects

Graphics and Text Screens

1. Draw some windmills. Try building a procedure squa rem; ll:

squaremill
repeat 8 [square right 45]

Make sure that the procedure squa re is in your workspace
before you run this.

Try some variations, using some of your other procedures.

2. Draw anything you like.

6.3



Recursion

Chapter 7
Recursion

What Recursion Does -

Recursion is a wonderful and powerful feature of Logo; not
all computer languages can do recursion. It is enormously
labour-saving - except for the turtle!

You know that procedures can call other procedures; house
calls squa re and t ri ang Le. A procedure can even
call itself (or seem to). This is called recursion.

Build a simple procedure ray:

ray
forward 50
back 50

Then incorporate this into a recursive procedure:

spinwheeL
ray
right 20
spi nwhee L ~ __

Don't panic - you can stop the procedure executIng by
pressing <ESC>.

7.1



Recursion

Thinking About Recursion

Projects

7.2

We can get a clearer picture of recursion if we think of
spi nwhee Las making and calling another copy of itself.
You can see below what would happen if you could do .
spi nwhee Lone step at a time.

spi nwhee L.•..------------i
ray
right 20
spi nwhee L ~- _

ray
right 20
spi nwhee L -~ _

ray
ri ght 20

In theory, this process will never end; spi nwhee Lean
always make and call another copy of itself. In practice,
the computer may run out of memory eventually, depending
on how complicated the recursion is.

1. Try replacing the ray of spi nwhee Lby something
more exotic. You may need to change the angle as
well.

2. The ray procedure finished with the turtle at the same
place that it started. Try different effects of
spi nwhee Lwith procedures that do this and with those
that do not.



Recursion

3. Draw a scri bb Le something like this:

Try this very simple recursion:

wheel
scribbLe
wheel

4. Try these procedures and adapt them to repeat other
messages. You might try messages of more than one line.

message
say [HeLlo, how are you?]

recur
message
recur

7.3



Polygons, Stars, Circles

Chapter 8
Polygons, Stars and Circles

Using Recursion

Recursion is very powerful for drawing polygons, stars and
circles. Try this:

square
forward 50
r;g~t 90
square

Project

1. Draw some other polygons and stars using recursion.

Heading

The turtle's heading is the direction in which it is
pointing. You can set the heading using set h 90.

In general, the syntax is:

seth n

You can sometimes stop a recursion by testing the heading.

onesquare
forward 50
r; ght 90
; f head;ng
onesquare



Polygons, Stars, Circles

Project

Circles

Projects

8.2

2. Does this method of stopping recursion work for stars?

Have you discovered the Turtle Total Trip Theorem for
closed paths yet? (The total turning along any closed
path is an integer multiple of 360).

The turtle only draws straight lines, but if you draw a
polygon with enough sides, it looks very like a circle.

3. Experiment with circles.

Draw a circle; draw a circle half the size, a quarter
of the size ... .

4. Draw a truck.

Draw a small truck - half size?



Drawing a Circle with Given Radius

This is more advanced, using pi.

Suppose you want to draw a circle
of radius 50 by making a 36-sided
polygon. The turn will have to be
10 degrees, so you will need:

circLe
forwa rd ?~-----------I
right 10
circLe

Polygons, Stars, Circles

The problem is how far forward to go. The complete circle
(whose circumference is 2 n radius) is to be drawn in
36 steps, so each step must be:

(21f x 50) / 36 = (n x 50) / 18

RM Logo has the value of n built in, under the name pi .
Type:

say pi

and Logo will print out the value of n :

3.14159265358979

This is correct to the 15 significant figures to which
RM Logo works.

So, to draw a circle, you do:

circLe
forward 50*pi /18
right 10
circLe

8.3



Polygons, Stars, Circles

Projects

8.4

The centre of this circle is very slightly above where the
turtle starts. If you want to line circles up alongside
one another, a more accurate effect is produced by:

circLe
right 5
forward 50*pi/18
right 5
circLe
To see why this is better, draw a hexagon as a very
approximate circle by each of the following procedures:

hex
forward 50
right 60
hex
hex2
right 30
forward 50
right 30
hex2

5. Make a procedure to draw a circle
of given radius when the turtle
is sitting at the centre of it.

6. RM Logo provides two primitive procedures, arc r
and arc L,which draw arcs, turning to either right or
left. Each procedure takes two inputs, and the syntax is:



Polygons, Stars, Circles

For example:

arcr 20 90 I
I
I
'20
1
I

____ - __ I

20

does this:

and arc r 20 360 would draw a complete circle of radius
20 turtle steps.

7. Build a snake.

Use a snake instead of a line for drawing some stars.

Multiple Turtles and tell

RM Logo can talk to just one turtle, or it can talk to up
to eight different turtles. The command which calls
up a particular turtle is:

te L L n ~-------_-.J

Try the following procedure which produces four turtles
with different pen colours, facing different directions,
all ready to draw the same pattern at the same time.

8.5



Polygons, Stars, Circles

start ~
te LL 1...•.••1-----------------~
setpc 1 8
teL L 2 .• turtle 2
setpc 2
right 90 ~
teLL 3.. ~
setpc 3
right 180 ~
teLL 4... ~
setpc 4
right 270
teLL [1 2 3 4] ,.-------(

Now type in squa re (make sure that squa re is in your
workspace first), and watch all your turtles drawing
squares at the same time. Try some other patterns with
multiple turtles.

8.6



Variables

Chapter 9
Variables

Varying the Size of a Drawing

At present, if you want to draw a square of a different
size, you have to change the procedure. If you use
variables, you can input the size of drawing you would
like without changing the procedure.

Change the original version of squa re to use a variable.
Start with:

square
repeat 4 [forward 50 right 90]

Edit it to:

sqinp 'side
repeat 4 [forward :side right

Do not omit the quotes or colons; they are explained later
in the chapter. When you try to run sq inp, it will
complain that it does not have enough inputs. Type:

sqinp 50

and it will fun. You can use any number as the input.

Project

1. Make a procedure
growsquare
to draw this.

n
9.1



Variables

Procedures Taking Inputs

Project

9.2

You will recall from Chapter 3 that some of the Logo
primitives take inputs. They include forwa rd,
backward, right, Left.

You have to type forward 50 and so on. Other Logo
primitives do not take inputs. For example:
cs, rubber

Until this chapter, none of the procedures you wrote
yourself took inputs. Now you have written a procedure
sqi np that takes an input. You have to type:

sqinp 40-........••~- ~

~

A procedure may take several inputs. Try this:

rectangLe 'height 'width
repeat 2 [forward :height right 90

forward :width right 90]

To run this procedure, you have to give two inputs, so you
type something like:

rectangLe 50 35

1. Build procedures to draw:

a house of given size

a truck of given size



Variables

Colons and Quotes

When you build:

rectangle 'height 'width

Logo does two things:

• It sets up a procedure called rectang leo

• It associates with rectang le two empty boxes called
variables. Logo gives those boxes the names' he; ght
and' wi dth.

'height 'width

rectangle D D
In Logo, names (or words) always have a quotation mark'
in front of them. You have used this earlier. To save your
workspace, you typed something like:

save 'Sa lly

'sa lly is the name that you gave your workspace when you
saved it. In the same way, the names of the variables in
rectang le are' hei ght and' wi dth.

But why are there colons rather than quotes in the rest of
the procedure? The answer is that a colon indicates the
value which is given to a variable, that is, the number
which is put in the box.

9.3



9.4

Variables

When you type rectang le 50 35, the situation becomes:

'height 'width

rectangle 50 35

and the values in the boxes are 50 and 35. The procedure
is given the title:

rectangle 'height 'width

telling Logo that rectang le will use two named boxes. So:

rectang Le 50 35

tells Logo that the value found in the box: hei ght is 50
and the value in : widt h is 35.

Within the procedure, the command forward : hei ght
instructs the procedure to look in the box named I he i 9ht ,
and to find and use the value of the variable - that is,
50. The punctuation gives Logo important signals; 'hei ght,
: hei ght and hei ght mean three different things in Logo.

• 'height
(pronounced quote-height) is the name of a variable

• :height
(pronounced colon-height or dots-height) is the value
of the variable whose name is 'hei ght

• hei ght
without a quote or a colon is nothing to do with
variables. Logo always thinks that a word without a
colon or a quote is a procedure



Variables

If you write hei ght without a quote or colon in:

rectangle height 'width

Logo will complain. It has looked for a procedure he i g h t,
and failed to find one.

Local Variables
The boxes provided for variables in Logo are private;
their use is restricted to a particular procedure. They
are called local variables, and they belong to that
procedure only. Because the variables that we h~ve dealt
with up until now are local, different procedures can use
variables with the same name. Try this:

flag • hei ght
forward :height
rectangLe (:height/2) :height
backward :height

This is what happens when you do fLag 50:

flag

'height

G
'width

rectangle
repeat 2 [fd 25 rt 90

fd 50 rt 90]
9.5



Variables

Coordinates

Instructions for moving the turtle to a particular
position on the screen are often useful. The screen has
the coordinate system shown below.

y
93

-x
-159 0,0

x
158

-y
-94

The commands set x nand sety n move the turtle to given
coordinates. For example:

setx 100
sety 50

will move the turtle to position (100,50).

You can move to new x and y coordinates at the same time
by using:

setpos

This command needs square brackets to enclose the list of
the two coordinates to which the turtle is to move, so:

setpos [100 50]

produces the same effect as the last two commands.

9.6



Variables

If you want to use variables with setpos, different syntax
is needed. To move the turtle to the point whose
coordinates are stored in the variables named I a long and
I up, for example, you have to write:

setpos sentence :along :up

The reason for this is that Logo does not allow you to
write variables inside lists, so it objects to [ : a long
: up]. But the command:

sentence abbreviation se

overcomes this problem by turning its inputs into a list.
So:

sentence :along :up

outputs a list whose members are the values of : a long and
: up, so that if, for example, : a long is 50 and: up is 35
then setpos sentence : a long : up is equivalent to
setpos [50 35].

Heading

The turtle's heading is the direction in which it is
pointing. You can set the heading using:

seth n stands for set heading

The heading is measured clockwise from the position where
the turtle starts from (ie. facing upwards).

S
180

9.7



Variables

Project

9.8

3. You are now ready to draw streets.

and all sorts of pictures.



make, say, result

Chapter 10
make, say and result

make

In Chapter 9 you wrote a
proceduregrowsquareto
draw this.

Probably you used a combination
of two procedures which were
something like these:

-
n

square 'side
repeat 4 [forward :side right 90]

growsquare
square 10
square 20
square 30
square 40
square 50

This seems a rather tedious way of writing the solution to
this problem. You might ask whether there is a way of
changing the value of the variable named's ide
automatically within g rowsqua re, so that you can avoid
typing squa re five times.

The Logo primitive rnake enables you to do this - it is
used to put a value in a box such as's i de. Type:

make 'side 10
say :side

The command rnake ' side 10 tells Logo to create a box
whose name is's i de and put the number 10 in it.

10.1



make, say, result

Project

say

10.2

'side

When you ask the computer to say : side, it will print 10.
The say command puts whatever follows it onto the screen.

If a box whose name is •side already exists, rnake •side
puts a new value in the box. Logo will even work out the
value to put in that box. Try:

make 'side (:side + 10)
say :side

Did Logo print out 20? It added 10 to the previous value
in the •si de box, which should have been 10.

1. Build a revised procedure for 9 rowsqua re, using rnake.
A possible procedure follows.

growsquare
rnake •sid e 10
repeat 5 [square :side make 'side

(:side+10)]

The say command enables you to print out a result without
using the turtle. say takes one input, so it needs to be
followed by that input, which may be the output of an
arithmetic operation, for example.



make, say, result

The following diagram shows how say 3 + 5 works.

3~ e....result of +-.8-.input to say----.say/ .

5

Try:

say (60 -10)
say (40 / 6)

You can omit say in these examples; Logo will respond to
60 -10 and 40 / 6, provided that you are not
working within a procedure. In a procedure, if you omit
the say and write only 60 -10, Logo will complain that
you didn't tell it what to do with 50.

Variables in Non-Graphics Procedures

In a turtle drawing procedure we can use variables to
control the size of the drawing.

For example, the procedure:

hexagon •side
repeat 6 [forward :side right 60]

draws a hexagon of side 60 when you type hexagon 60.

In just the same way, we can use variables in non-graphics
procedures. For example, we can build the procedure below,
called add3, to add three numbers; this procedure will
take three inputs.

10.3



make, say, result

add3 I a 'b Ie

say :a + :b + :c

Sometimes, you might want to use the result of adding
three numbers in another procedure. Then, you do not want
Logo to say the result of the addition, but to send the
result to another procedure. The primitive:

resuLt

enables you to do this. Modify the procedure add3 to this:

add3 I a I b Ie

resu Lt : a + : b + : c

Now if you type add3 20 50 30, nothing happens on the
screen; the resu Lt 100 is waiting to be used by some other
command, within another procedure. For example, you might
want to draw the baseline of this car:

t
1

This could be done with:

forward add3 :a :b :c

lOA



make, say, result

The command forwa rd add3 20 50 30 is carried out in the
following way:

forward calls procedure add3.

add3 takes tJ inputs 205030
and adds them together to get the result 100.

~
the result 100 is returned from add3 to forward

~
forward 100 can be carried out.

So, the primitive resu l t takes one input and it does three
things:

• it stops the procedure in which it is used, and
returns control to the procedure which called it

• at the same time it takes its input, which may itself
be a complicated procedure, and works it out

• it passes the resu l t of that working out to the
procedure which called it

The procedure add3 is rather trivial, but in more
complicated cases there are advantages in using sub-
procedures which send back a resu l t to the main procedure.
For example, the same procedure add3 can be used in all
the following examples without change:

say add3 20 50 30

forward add3 20 50 30

repeat (add3 20 50 30) [square right 40]
10.5



make, say, result

Projects

10.6

In these projects, you will probably want to use
textsc reen, as they do not involve any drawing.

2. Make a procedure to find the area of a rectangle. When
you type rect. a rea 6 5 it should respond with
The area ;s 30

You can achieve this message by using something like:
say sentence [The a rea ; s] : a * :b

Recall that sentence makes a list from its two inputs.

3. Make a procedure to find the perimeter of a rectangle.
When you type: rect. per; m 6 5 it should respond
Th.e per; meter ; s 22.

4. Make procedures to find the area and perimeter of a
square. Use rect. a rea and rect. peri mas subroutines.

5. Print out a list of the squares of numbers from 1
to 20.

6. sentence puts together two inputs to make a list.
Build a procedure se3, whose result is a list consisting
of three inputs to the procedure. Use this to build a
procedure signature which will write titles for your
pictures, as follows. When you write:

LabeL signature 'Superstar 'Jane

it will label your picture

Superstar drawn by Jane

creating the signature near where the turtle is.



More Commands

Chapter 11
More Commands Using Numbers

Prefix Arithmetic

There are arithmetic commands in RM Logo which are
of a different type from the ordinary arithmetic commands
- they are prefix commands. They do the same jobs as the
ordinary arithmetic commands, but their syntax is
different. To add 25 and 12, you can use:

add 25 12

instead of 25 + 12. The command add is written first,
followed by its two inputs: the command is prefixed
to the inputs. There are four prefix arithmetic commands
which can be used instead of the ordinary arithmetic
commands if you wish. They are:

add
subtract
muLtipLy
divide

abbreviation sub
abbreviation mu L
abbreviation d ; v

These commands are provided in RM Logo to enable the
language to be used consistently: all the non-arithmetic
Logo commands are prefix. You write:

forward 50

putting the command before the inputs. The ordinary
arithmetic commands, such as +, are infix; you put the
command between inputs:

say 3 + 4

11.1



More Commands

The arithmetic commands are an exception to the
general rule that Logo commands are prefixed to their
inputs.

Other Arithmetic Commands

It is sometimes useful to be able to get rid of the
decimal part of a number such as 6.66667. This can be done
by using the command int. For example:

say int 6.66667

chops off the decimal part and prints 6 . Similarly, f rae
removes the whole number part, leaving only the decimal.
For example:

say frac 6.6667

prints a • 6667 as its result.

Logo can also evaluate square roots; the command is:

. sqt number

For example: say sqt 225 prints out 15.

Logo can also do trigonometry. Look in the RM Logo
book for details.

Integer Division

If you type say 9/4 or say di v 9 4 then Logo will
respond with 2.25. Some young children may not be used to
seeing decimal numbers. The command:

share 9 4

produces the whole number quotient 2.
11.2



More Commands

You can get the remainder by using:

remainder 9 4 abbreviation rem

which produces 1.

pick and random

These are useful facilities for playing games and for
drawing unexpected designs. The command:

pick

takes one input and returns a random whole number. For
example:

say pick 6

prints a random whole number chosen from 1,2,3,4,5,6,
so pi c k 6 can be used to simulate throwing a die. You
can also produce random pen colours by choosing a whole
number from 0, 1,2, ... , 14, 15. To do this, use:

(pick 16) -1

The brackets are necessary here. If you leave them out,
and write:

pick 16 -1

Logo will work out 16 - 1 first, and think that you mean
to do:

pick 15

The command random gives a random decimal number between°and 1, which is sometimes useful.

11.3



More Commands

Projects

1. Write a procedure ave rage which takes two inputs, so
that:

say average 12 20

prints 16.

2. Draw a square at a random position on the screen. (You
can use a combination of setpos and pi ck, for
example.) Make the square of random size. Also alter
the pen colour randomly. Use a procedure to draw a lot
of random squares.

3. Use Pythagoras' Theorem to draw a square of given size
and its diagonals.

4. Simulate a die. When you type toss, it will draw a
picture of the face, showing a random number of spots.
Design each face first. You will need a test to decide
which face is to be displayed; see the next section.

if ... and Tests

Often, you want Logo to do different actions according to
whether some condition is true or not. For example, when
drawing random squares on the screen, you may not want to
draw a square which will be partly outside the screen
area. The command needed to make a choice between actions
is if •••

The syntax of this command is:

11.4



More Commands

For example, you might use the line:

if heading = 0 [right 90 stop] [Left 90]

The lists of actions must be enclosed in square brackets.

A test is a question which returns the answer' t rue or
, fa Lse. If the test returns the answer I t rue then the
first list of actions is carried out. If the test returns
I fa Lse then the second list of actions is carried out.

The second list of actions may be omitted, so that the
command reads:

i f test [actions]

In this case, if the test returns I fa Ls e, the program goes
straight on to the next line.

To make i f work, we need tests which return I true or
I fa Lse answers. A comparison between two numbers using<,
> or = gives a way of doing this. For example:

5 > 2 is I true

5 > 7 is I faLse

Logo is able to make comparisons such as this, so that we
can use commands such as:

if :x < 90 [setx :x]

if :x > 90 [setx (120 -:x)]

11.5



Words and Lists

Chapter 12
Words and Lists

A Larger Project

Young children can gain much pleasure from using the
turtle graphics part of Logo, but they may not have enough
skill to use the full computer keyboard, and the amount of
typing involved in using the full version of Logo may be
too difficult.

Very young children need a simplified version of Logo,
which uses a single key to represent each of forward,
backward, r; ght and Left. The space bar should not be
needed, and pressing a single number key should produce a
larger movement of the turtle than in the full Logo, so
that a child will really see that the turtle has moved.
Then brightly coloured labels can be stuck over the few
keys that are to be used, to help the child to find them.

You will have your own ideas about exactly what features
you would want to build in to your own version of
Younglogo. One of the exciting features of Logo is that
it does not only turtle graphics: it is a high-level
computing language which enables you to write software
such as Younglogo to your own design.

The next few chapters show you how to use features of Logo
which are not needed for turtle graphics; however, you do
need them for writing software such as Younglogo and even
games programs.

We shall introduce these additional Logo commands as we
start you off on designing and writing your own version of
Younglogo.

12.1



Words and Lists

Input From the Keyboard

In Younglogo, you will want a child to input a single
letter such as f from the keyboard to the program, and
Logo will need to translate that to forwa rd and use it to
drive the turtle. The command which enables Logo to accept
input from the keyboard is:

readList

To see how read L; st works, build this little experimental
procedure:

try
say [type something]
make I txt read List
say :txt
try

When you run try, the words type some t h i ng are printed on
the screen, and the procedure then waits for you to type
something in at the keyboard and press <ENTER>. Whatever
you type goes into the I txt box. The procedure t ry is a
recursive procedure, so it will keep asking you to type
something in until you press the <ESCAPE> key.

Try different sorts of input when try asks you to type
something. Include words, phrases, numbers, nothing at
all.

The command read Lis t works like this:

• read List stops and waits for you to input some
characters at the keyboard.

• read L; s t outputs your typing, stored in a list.
So if you type he LLo, the command read L; st outputs
the list [he LLo].

12.2



Lists

Words and Lists

In try, the output of read Lis t goes into the I txt
box, as if the line were:

rnake I txt [he LLo]

Square brackets are an essential part of Logo; they
indicate that you are dealing with some data in the form
of a list. A list always has square brackets surrounding
it. Here are some examples of lists:

[type something]
[he LLo]
[what do you want?]
[243J
[2 4 3J

[46 rambLe 12.76]
[sunday monday tuesday wednesday thursday

friday saturday]
[]

The elements of a list can be numbers, words or other
lists. The easiest of these three data types to recognise
is a number.

A number can be positive or negative, a whole number or a
decimal. You must not put spaces in the middle of a
number. These are valid numbers:

254
-254
254.123
-254.123

12.3



Words and Lists

Words

A word is any sequence of characters which starts with a
quotation mark. Logo recognises the beginning of a word by
the quotation mark, and it recognises that it has come to
the end of a word when it comes to a space. This means
that you can mix up letters, figures and punctuation marks
in a word. These are valid words:

, hello
, l; ne2
'want?
'2+3
'goodb?ye, ...",

When to use Quotes

• The name of a variable is a word (which explains why
you use the quotation mark so often in Logo). For
example, you might type: make 'he; ght 50.

• When you save your workspace with save I sa lly, then
I sa IIy is a word.

When not to use Quotes

• When you command Logo to execute a primitive
procedure, for example l; f t or forwa rd 50

• When you run a procedure you have built yourself, such
as squa re 50

• Procedure names do not have a quote. If you
accidently type a word without the quote, for example
he llo, Logo will look for a procedure he llo and
complain if it doesn't have it in its memory.

12.4



Project

Words and Lists

The idea of using a quote to distinguish a word from a
procedure is borrowed from the language Lisp from which
Logo is descended. So remember that a quote stops Logo
from trying to find and carry out a procedure with that
name.

In Logo, brackets also prevent execution. If you type:

say [heLLo how are you]

Logo prints the list he LLo how are you without the
brackets, and does not try to look for procedures called
he LL0, how, are and yo u.

It is important to keep in mind the fact that say prints
a list without its outer square brackets, and a word
without the' at the beginning. The primitive pri nt
does exactly the same as say, except that it prints
square brackets when they exist. Try these:

say [say he LLo]
print [say heLLo]
say 'he LLo
print 'heLLo

1. The error messages in Logo vary according to the type
of error, as you know. This can help you to
distinguish between words and lists. Observe the
effect of various commands such as:

say 'he LLo
print heLLo
say [he LLo]
print :heLLo
say []

12.5



Words and Lists

Variables and their Values

The name of a variable is a word, such as I txt.The
command:

rnake I txt expression

creates a box labelled I txt, and puts the expression into
that box as the value of the variable. Logo is extremely
kind, compared with other computer languages, about the
expressions which it will accept as values of variables.
Experiment in putting different types of expression into
the I txt box.

Did you find that Logo will accept a number, or a word, or
a list, and put it in the I txt box? Logo's ability to
accept any data-type and put it into a variable box is
very useful. From now onwards, we shall use expression to
stand for any of a number, a word or a list.

Logo can also test to see which data-type is in a variable
box. Try this procedure:

test I type
if listq :type [say [list]]
if wordq :type [say [word]]
if nurnberq : type [say [number]]
end

Use different values for the variable I type. Try:

test 20
test [hello there]
test [hello]

12.6



Projects

Words and Lists

Three new Logo primitives were used in this procedure.
They are:

L;stq, wordq, numberq

Each tests to see if its input is of its own type. The
syntax is:

L ; s t q expression

L; s tq returns t rue if the expression is a list, and
fa Ls e otherwise. Hence, Lis t q is a test which
provides the t rue or fa Lse output which; f •••
needs as its input. The syntax of wordq and numbe rq is
similar ..

2. Start to build the procedures which will make up
Younglogo. try is the basis of Younglogo.

Design a nice prompt which sits on the screen when
Younglogo is waiting for you to type something in.

Arrange (temporarily) for Younglogo to print forwa rd
when you press <F>, backward when you press <B>, and
to ignore any other input. To do this, you need to
know that the equals sign = is a test which not only
tests numbers for equality; it can also be used to
test words or lists to see if they are the same.

3. Amend Younglogo so that it will stop gracefully
without using escape. It should stop if you type in
some special word such as ex; t. If you choose ex; t it
will apparently become a primitive command in
Younglogo; ex; t in RM Logo takes you out of Logo to
the operating system.

12.7



Words and Lists

Laying out Text on the Screen

Now that you can use read l; st, you are able to write an
interactive program. For example, a program may ask
someone to input a number at the keyboard, and the
procedure will then print out the multiplication table for
that number.

The screen layout may be a bit tiresome, but the following
points should help. You can clean the textscreen by using:

cLeantext abbreviation ctx

and start the printing at a particular place on the
textscreen by using:

setcursor

set cursor takes a list with two elements as input; the
first element is the line number and the second the column
number, as shown in the diagram below.

line

25

--------.·80
column

The command set cursor [10 2] puts the cursor in the
position shown.

The command type is just like say, except that the
cursor does not move to the next line after printing.

12.8



Projects

Words and Lists

The commands say and type take only one input. Ifyou
need them to take more than one input, you have to use
sentence to make two inputs into a single list, as in the
following example:

say sentence [how are you] :name

Ifthe variable I name contains Jane, this will produce
the message:

how are you Jane

The command say [] produces a blank line of printing.

4. Print out some multiplication tables. (You may need to
read the next chapter to cope with some of the
problems you will encounter.)

5. Write a "drill and practice" arithmetic program.

12.9



More about Lists

Chapter 13
Looking More Closely at Lists

Further Development of Younglogo

When Younglogo is running, a child's input from the
keyboard will be something like:

f7

You will want the turtle to respond by doing something
like:

forward 70

In this chapter we look at the commands which enable you
to make Younglogo do this.

Tearing Lists'Apart

In the second section of Chapter 12, you probably arranged
to store the child's input from the keyboard in a box
called' txt.

'txt

A likely method of proceeding with the Younglogo project is
to get Logo to do something like this: look at the first
character of the list in ' txt to see if it is f, and the
second character to verify that it is a number. Then you
will need to get Logo to build up the command forwa rd 70
and tell the turtle to carry out this command.

13.1



Mo~e about Lists

Logo provides commands which take lists apart. Our list
has onlf one element, the word 'f 7. However, a young child
might manage to get a list with many elements into the
, txt box; for instance lots of keys (including the space
bar) pressed randomly would end up with something like this:

'txt

Irs 23 46a pbx; I
This list has five elements. A child may also manage to
get the empty list [] into' txt, by hitting <ENTER>
before doing anything else. The empty list has no
elements.

The commands firs t and res t are used to split off bits of
lists and look at them. Try:

print first [heLLo how are you?]
print rest [heLLo how are you?]

Also try commands such as the following, until you know
how fi rst and rest work with lists, words and numbers:

print first 'heLLo
print first 123.4
print rest 'heLLo
print rest 123.4
print fi rst []

first and rest

The behaviour of the command:

fir s t expression

can be described as follows:
13.2



More about Lists

• If expression is a list, fir s t returns the word which
is the first element of the list. fir s t gives an error
message if the list is empty.

• If expression is a word, fir s t returns the character
which is the first character of the word. firs t gives
an error message if the word is empty.

• If expression is a number, fi rst returns the number.

The behaviour of the command:

res t expression

is rather similar to that of fir s t, except that the result
of deleting the first element of a list is a list, and the
result of deleting the first element of a word is a word:

• If expression is a list, res t returns a list
consisting of all the elements except the first
element of the list. It gives an error message if the
original list is empty.

• If expression is a word, res t returns a word
containing all the characters except the first
character of the word. It gives an error message if
the original word is empty.

• If expression is a number, res t returns a o.
You can print the character which is the first character
of the first word of a non-empty list stored in I txt by
doing:

print first first :txt

For example, if I txt contains the list [f7], then
first : txt produces f7, and so first (f i rst : txt)
produces the character f.

13.3



More about Lists

Similarly, the second character of the list in I txt can be
produced by doing:

print first rest first :txt

Here rest <fi rst : txt) produces the list [7], and so
first rest first :txtproducesthecharacter7.

Project

1. As the next step towards Younglogo, build a procedure
Babylogo, which might be a child's first introduction
to Logo. It should do these things:

- ignore an empty input from the keyboard;

- move the turtle forwa rd 10 if <F> is pressed;

- move the turtle ba c kwa rd 10 if <B> is pressed;

- turn the turtle ri ght 45 if <R> is pressed; .

- turn the turtle Lef t 45 if <L> is pressed;

- return to Logo if the keyboard input is ex it;

- ignore any other keyboard input.

Other Commands to Manipulate Lists

The following commands may also be useful:

Last
but Last abbreviation b L

They behave similarly to fi rst and rest, at the other end
of a list.

13.4



More about Lists

The command:

sentence abbreviation se

makes a list out of two inputs. Try this procedure with
different inputs until you know how sentence works.

sent.test
rnake I a read lis t
rnake I bread lis t
pri nt sentence : a : b
sent.test

List Pointers

RM Logo has another way of getting at a particular
element of a list, instead of using fir stand res t. This
method is the use of a list pointer. Try this procedure:

pointer
make IX [hello how are you?]
print :x # 1
print :x # 2

The syntax of the list pointer # is:

list # integer

The list may be a value stored in a box such as I X, or you
may input it directly. For example:

print [hello how are you?] # 4

will produce you? (Some people pronounce # 'number', and
others call it 'hash'.)

13.5



More about Lists

List pointers only work on lists; you cannot use them to
get at particular characters in words. Then, you need
fi rst and rest. In the Babylogo procedure, you could
obtain the first element of the list in I typi ng by doing:

rna ke I f rant : typi ng # 1

This produces a word, which then has to be split up using
fi rst.

13.6



Single Key Input

Chapter 14
Single Key Input

The Primitive key

Babylogo teaches a young child to move the turtle move by
pressing one of the keys <F>, <B>, <R> or <L>
and then hitting <ENTER>. The amount by which the
turtle moves is pre-determined in the procedure.

The next step in a child's learning may be to press <F>,
<B>, <R> or <L> followed by a number key which
controls how far the turtle moves. It seems quite easy to
design a procedure to do this by splitting off the second
character of the list in ' typi ng, looking at it to see
that it is a number, and using it to control the turtle's
movement. This procedure looks promisinFt.::.---_~

distance
cs __-- .•••••_~
make 'move fi rst rest
if not numberq :move
forward (10 * :move)

""---.--.----fi rst : typi ng
[stop]

Unfortunately, the procedure does not work, and the turtle
obstinately refuses to move. If a child's input is f7,
Logo fails to recognise that the 7 (the second character
of f7) is a number. When first is used to split up a word
it treats every character as a letter, even one that looks
like a number to us; hence, the answer to the test numberq
is fa lse.

14.1



Single Key Input

You can verify this by amending the line of dis tan ce
which makes the test:

if not numberq :move [print :move stop]

and using various lists in I typi ng. You can often detect
bugs in your programs by putting temporary p r int
statements at suitable places in your procedures.

There is no primitive command in RM Logo which can be used
to persuade Logo to recognise the 7 as a number rather
than a letter, once it has been embedded inside a word. A
different approach must be used to solve this problem.

The command key gives this different approach. key waits
for a single key to be pressed, and returns its value. It
accepts the input instantly, and does not wait for
<ENTER> to be pressed. To see how key works, build
this procedure and try it out by pressing various keys:

input
make I a key
print :a
print numberq :a
input

You will see that key can distinguish between a letter and
a number. When key encounters a character which is not a
letter or a number, for example <ENTER> or the space
bar, it returns a word made up of a combination of
characters such as\Od or\; these are codes for the
characters.

You are now ready to build Younglogo. The first two
characters a child inputs can be stored in two different
boxes, called If ront and Imove, by using the commands:

rnake If ront key
rnake I move key

14.2



Single Key Input

A keyboard input of f 7 will now produce:

'front Imove

You can then look in 1 front to see which command the
turtle is to execute, and look in 1 move for the number
which is used to calculate how much the turtle is to move.

If you follow this approach, the child will no longer need
to press <ENTER>; the turtle will move as soon as
two suitable keys are pressed. However, you may still
want the child to press <ENTER>, to get used to one
of the characteristics of many computer programs - nothing
happens until <ENTER> is pressed. If you want to do
this, you can arrange for Younglogo to wait for a third
character to be input, and put this in the box 1 go, with:

make 1 front key
rnake 1 move key
make Igo key

In this case, an input of f 7 <ENTER> would produce:

'front 'move 'go

Then you can test to see whether the word '\Od is in 1 go
before making the turtle move. Note that a word must be
preceded by 1 in a command such as:

if :go = '\Oe/D [draw]

14.3



Single Key Input

Project

keyq

1. You are now able to complete Younglogo. When finished,
it should be able to draw forward and backward, and to
turn ri ght and Left by appropriate multiples of the
keyboard input. You may also want to add other
features, such as Lif t and drop. You may also want it
to exit gracefully to Logo when you type some special
characters such as ex.

The command keyq tests whether a key has been pressed,and
so it can be used to stop Logo doing something. Try this
procedure:

draw
do [forward 1J untiL keyq

The turtle moves forward until you press a key, and then
it stops. keyq is a test, and returns' fa lse if no key
has been pressed, and' t rue if a key has been pressed.
keyq does not look to see what key has been pressed; if
you want Logo to read the key, you can use key. Try this
addition to the d raw procedure:

draw
do [forward 1J untiL keyq
if key = 'r [right 90J
draw

do [ ... ] until ...

14.4

In the commands do [ ..J unt i l ... , do is followed by a
list of the commands to be carried out, and unt i L is
followed by the t rue or fa lse result of a test.



Single Key Input

The syntax is:

Another example of how do [ ...J unt i l ... can be used to
control a loop is:

do [forward 1 right 1J until heading >= 359

This draws a circle if the original heading of the turtle
is 0 (the starting position).

This method of looping enables a list of commands to be
repeated until something happens to stop the loop. Looping
stops when the test returns t rue. Note that the list of
commands following do is always executed at least once,
even if the test is t rue the first time.

As an example of this, try these procedures:

count2s
make IX readlist
rnake I x fir s t : x
do [make IX inc :xJ unti l :x > 100
count2s

inc I x
print :x
result 2 + :x

Unfortunately, this has a bug in it; if you input the
number 108, it prints 108 before asking you for another
number. The problem is that the do [...J unt i l ...
loop does inc once before it tests the number to see
whether to stop looping.

14.5



Single Key Input

while

14.6

Another way of controlling looping is to use whi leo
We could replace the looping line of count2s by:

while :x < 100 [print 2 + :x]

whi le carries on doing the list of commands as long as the
test returns t rue. If the test is fa l s e the first time,
the command is never executed.

Try this procedure to see how whi le works.

ho ldkey
whi le key =
whi le key
whi le key
hoLdkey

I f [forward 5]
I r [ri ght 90]
I l [left 90]

The syntax of whi le is:

w hi l e truelfalse list

An important difference between do [... ] unti l ... and
w hi l e [... ] is the order in which they do the test:

do [list of commands] until test

tests after carrying out the command, but:

while test [list of commands]

tests before carrying out the command. Hence, if whi le is
used in the count2s procedure, an input greater than 100
is not printed out.



Projects

Single Key Input

2. Turn d raw into a piece of software which allows you to
sketch on the screen, steering the turtle by pressing
different keys.

3. The following procedure shows one way of taking input
from the keyboard and storing each letter as an
element of a list:

LetterList
make • a key
do [make 'n key make 'a sentence

:a :n] unti L :n = '\Od
print :a

Try to use recursion to do the same job. You may want
to incorporate this idea into Younglogo.

4. You can now write procedures to p'rint out sequences
according to given rules. As examples, make procedures
which produce:

1, 3, 5, 7,
56, 66, 76, 86,
1, 2, 4, 8,
1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci sequence)

14.7



Boolean Primitives

Chapter 15
Boolean Primitives

The Primitive not

In the procedure di stance which you tried in Chapter 14,
the primitive not was used in the following way:

if not numberq :move [stop]

The command not is an example of a Boolean primitive;
these primitives are used to carry out 'logical
operations'. We recall that the command:

if ... [actions1] [actions2]

requires either t rue or faLse as its input,
as shown below.

true
-----I••[!]I-----l ••actions 1

false
----I ••[!]I-------l••actions2

The command not requires either t rue or fa Lse
as its input, and it also outputs either t rue or faLse;
if the input to not is t rue, the output is faLse,
and vice versa.

15.1



Boolean Primitives

true .~
false .~

false
••

true

To see how this works, try:

pri nt not Li stq [he LLo there]

This will print' fa Lse, because [he LLo there] is a list,
and so the oUtjJut of Li stq [he LLo there] is true.

In the procedure di stance, not was used to do something if
the box' move did not contain a number. For example,
suppose the box 'move contained K:

'move

Then the test numbe rq : move would give fa Lse as its
output, but not numbe rq : move would give true. So:

if not numberq :move [stop]

would stop the procedure of which it was part, and return
control to the procedure which called it.

both and either

There are four Boolean primitives; the others are bot h,
ei ther and xor. The command xor will be mentioned later;

. the other commands express the same meaning as the English
words from which they are derived. Each of these commands
requires two inputs, which must be either true or fa Lse.

15.2



Boolean Primitives

Their behaviour is as follows:

• The primitive bot h returns t rue if both its inputs are
true, and fa ls e otherwise .

• The primitive ei ther returns t rue if either (or both)
of its inputs is true, and fa lse otherwise.

Each of the commands both and ei ther is a prefix command;
it must be written before its inputs. These commands
enable you to test combinations of conditions at the same
time. For example, the line:

if both :a > 0 :a < 10 [stop]

stops the procedure if °< a < 10, while the line:

if either :a > 10 :b < 0 [stop]

stops the procedure if either a > 10 or b < 0 or both.

The commands both and ei ther have alternative infix
forms which may he easier to use. The infix form of both
is &, and the line:

if :a > 0 & :a <10 [stop]

means the same as:

if both :a > 0 :a < 10 [stop]

The infix form is likely to be easier for most people
to read and to think about, especially because the symbol
& is often used as an abbreviation for and, and so is a
synonym for bo t h.

The infix symbol for ei ther is not so intuitive; it is I.
We can write the line:

if either :a < 0 :b > 10 [stop]
or alternatively as:i f : a < 0 I : b > 10 [s top]

15.3



Boolean Primitives

xor

The command xor is an exclusive OR; it returns t rue if
either of its inputs is true, but not both. An example of
using xo r is given in the primitive section of the RM Logo
book.

Commands using true or false

In this book, we have used several commands which output
either true or fa lse. They are:

>
<

listq
numberq
wordq
both
either
not

A number of other commands which output t rue or fa lse are
given in the RM Logo book. These commands include:

• I emptyq which tests a word or list to see if it is
empty

• equa lq which is a prefix form of the equals sign

• membe rq looks to see if its first input is a member of
the list which is its second input.

15.4



Boolean Primitives

There are also several commands which need true or fa lse
as inputs. These include the control commands:

if (true/false) L ..J L ..J

do L ..J unt i l (truelfalse)

whi le (true) [ ••• J

and the Boolean primitives:

-""'IIIl~-------~-~
not (true/false) ~

bo t h ( true/ false) ( true/ false) ~---

e i the r ( true/ false) ( true/ false)

The Boolean primitives produce results which are also
t rue or fa lse.

Building your own Tests

A command which requires t rue or false as its input does
not care where that input comes from. It may come as the
output of another command, or you can type it in yourself,
as the word I true or I fa lse. The two lines:

do [BabylogoJ until (1 = 2)

do [Baby logoJ unti l I fa lse

have exactly the same effect; Babylogo is carried out.

15.5



Boolean Primitives

Projects

15.6

Because you can type in 't rue or 'fa Lse, Logo enables
you to build your own test procedures; you can deyise
tests that were not provided as primitives. For example,
the primitive numberq tests whether a variable is a
number; however, no primitive is provided to test whether
a variable is a whole number. The procedure given below
will do this. It looks to see whether the whole number
part of : x is equal to : x itself; if so, : x is a whole
number.

intq 'x
if <int :x) = :x [resuLt 'true]

[resu Lt 'fa Lse]

As another example of a home-made test, try the following
procedure to test whether a number is even:

evenq 'n
if <remainder :n 2) = 0 [resuLt 'true]

[resu l t 'fa Lse]

1. Make a procedure to check whether one number is
divisible by another.

2. Make procedures to test whether a number is prime.
Print out a list of prime numbers".



Multiple Turtles

Chapter 16
Multiple Turtles

Introduction

You first used multiple turtles in Chapter 8. Your
increasing command of Logo will now make it easier to
cr~ate and control multiple turtles. Try these procedures:

setup In
make IX 1
repeat :n [teLL :x right :x*360/:n

setc :x+1setpc :x+2
make IX :x+1]

teLLaLL :n
)

teLLaLL In
make I X 1
make It []
repeat :n [make It putLast :t :x

make I x ( : x+ 1)]
te LL : t

The procedure setup creates n turtles facing out at equal
angles from the centre of the screen. te LLaLL creates a
list of the numbers of these turtles, and tells all the
turtles in the list to be ready to carry out to commands.
Now if you do:

setup 8
arcr 20 180

all eight turtles will draw semicircles at the same time. In
fact, they all use a little bit of the computer's
time, one after another. It happens so fast that all the
turtles seem to draw together.

16.1



Multiple Turtles

The primitive put Last adds an expression to the end of a
list, and so is used to build up the list of turtles which
are to be commanded. pu t las t will be used again in
Chapter 18.

Project

1. Set up eight turtles in a line at equal distances from
each other. Make them all draw squares which touch one
another. Fill the drawing screen with a tessellation
of touching squares.

Experiment with other shapes. How many of them
tessellate (cover the screen leaving no gaps)?

vanish and turtles

The command van; sh will make all the turtles you have
created disappear. To command them again, you must
recreate them with teLL.

Try the tu rt Les command. It returns a list of the turtles
which you are commanding at the moment.

RM Logo has given turtle number 1 a name! It is called
Seymour, presumably after Seymour Papert who developed the
language. In fact, it responds to either te LL 1 or te LL
, seymour.

You can even name your own turtles with commands such as:

teLL 'fred

Then the turtle knows its name is 'f red, and will respond
to such commands as:

teLL 'fred arcr 20 180

16.2



Multiple Turtles

Parallel Processing

Remove all the turtles except number 1 with vani sh and
tell 1. Then type the command:

setspeed 3

The turtle moves forward at a steady speed, and goes on
moving forward at that speed whatever else you make it do
at the same time. Build a procedure for continuously
drawing squares, and use it with setspeed 3 (or some other
number). The syntax is:

setspeed n~ -,

It is as if the turtle were blown up the screen by a
gentle breeze as it draws. You can control the direction
of the breeze with:

setdi r n .......-__

Beautiful effects can be produced by balancing the speed
of the turtle against the speed of the wind. Your square
was probably drawn too fast for interesting effects to
show, but the procedures below will give you some idea of
the possibilities.

cirwind
setdir 200
setspeed 6
circle

circle
forward 1 r; ght 2
circle

16.3

\



Multiple Turtles

Projects

16.4

Notice that when you use setspeed to produce a breeze,
Logo automatically goes into wrap mode.

Now slow the turtle down. A useful way of doing this is to
make the computer count silently to itself before doing
the next command. Amend ci rc le to this:

ci rc le
forward 1 right 2
make I x 1
repeat 5 [make I x : x+1]
circle

Nothing shows on the screen, but the turtle counts
silently to 5 before drawing the next bit of its circle,
and this makes it go slower and appear to be battling
against a gale.

2. Swallows! This project may give you ideas for many
other beautiful effects. Imagine six swallows trying
to fly in circles from a central starting point, but
they are blown off course by a breeze. Use setup 6,
setspeed 0.3 and ci rc le to produce this effect.
Experiment with altering the speeds of the swallows
and the wind.

3. Build a Red Arrows flying display. It is possible to
give each turtle its own windspeed and wind direction.
For example, try this procedure:

start2
tell 2
setpos [50 0]
setdir 45
setspeed 6



Variables

Chapter 17
More About Variables

Polygons with Recursion with Variables

In Chapter 7 you drew some polygons and stars using
recursion; for example:

hexagon
forward 50
ri ght 60
hexagon

You can combine this with the use of a variable to draw a
hexagon of any size:

hexagon's ide
forward :side
ri ght 60
hexagon :side~ -i

Here is an all-purpose polygon, star and circle drawing
procedure.

poLy 'side 'angLe
forward :side
right :angLe
poLy :side :angLe

17.1



Variables

Polyspirals

Projects

17.2

Polyspirals are like polygons, except that they grow.

po lyspi 's i.de 'ang le
forward :side
right :angle
polyspi (:side + 2) :angle

1. What different shapes will po ly draw?

2. Try po lyspi with different angle inputs. Some of the
best designs are produced by angles near, but not
equal to, the angles that make polygons and stars. For
instance, try:

po lyspi 1 120
polyspi 1 118
po lyspi 1 122

3. Try some variations on po lyspi, such as:

po lyspi 2 ' side 'ang le ' inc
forward :side
right :side
polyspi2 (:side + :inc) :angle :inc

In this procedure, inc stands for increase. Also use a
dec to make the polyspi spiral inwards.

4. i nspi is a variation which changes the angle, rather
than the side (the names po ly, po lyspi and i nspi are
traditional in Logo circles).

inspi 'side 'angle
forward :side
right :angle
inspi :side (:angle + 10)



Variables

Try i nspi 10 33 and others. Amend i nspi to use
an inc, so that you have:

inspi 'side 'angle 'inc

Experiment with the effects obtained by changing the
values of the variables.

Local Variables

Logo uses two types of variables: local variables and
global variables. To prevent surprises in the ways in
which programs behave, you need to know how they differ.

A local variable in Logo is a box which belongs only to
the procedure in which it occurs. Any other procedures in
your workspace cannot find that box or look inside it.
This fact is very important, because it means that
different procedures can use the same names for variables
which mean different things. To see how this works, try
these procedures.

tryout 'side
forward :side
ri ght 90
alter :side
forward :side

alter 'side
make 'side (:side + 50)
forward :side
right 90

Do tryout 20. Were you surprised that the third line you
drew was of length 20 rather than 70? In procedure alter,
: side was increased from 20 to 70, but procedure t ryou t
drew the third line, and in the t ryou t procedure,
:si de stayed at 20. Changing: si de in alter did not change
:side in tryout.

17.3



Variables

17.4

Here is how the variables work in the two procedures. When
the name of a variable appears in the title line of a
procedure, Logo creates a box to hold the variable. The
box only belongs to that particular procedure - no other
procedure can find it or look in it. It is local.

So in the title line tryout " lsi de, a box whose name is
lsi de is created for tryout. Similarly, in the title line
of aLter I si de, a box whose name is •side is created for
the procedure a Lt e r. These boxes have the same labels, but
they are different boxes, and they can contain different
values.

If you type t ryou t 20 then this is what happens as the
procedure runs:

t t '20
ry10u The procedure tryout creates a box

called lsi de and puts the value 20 in
it.

forward :side
~ The turtle moves forward 20 steps.

right 90
~ , The turtle turns 90 degrees.

aLter :side

! Procedure t ryou t calls procedure
a Lte r, passing the value in •side
over.

aLter 'side

I Procedure a Lt e r creates a box •sid e
and fills it with the value passed
over from tryout.

make 'side <:side + 50)
I 50 is added to the contents of
• aLter's box •si de.



Variables

fortard :side
~ The turtle turns forward 70 steps.

r i 9jht 90The turtle turns 90 degrees to the right.

Control returns to tryout as there
are no more commands in a Lt e r .

forward :size
The turtle moves forward 20 steps.
Prqcedure t ryou t did not copy the
value 70inaLter's box 'side.
The value in's i de remains 20 in
procedure t ryou t .

Levels

It would be nice to be able to draw po Lysin different
colours without having to change the procedure each time.
Here is how to do this; start by typing in these procedures:

poLy 'side 'angLe
\ setpc :coLour

repeat (repts : ang le)
[forward :side right :angLeJ

repts 'ang le
resuLt (360 I :angLe)

When you run po Ly,Logo will complain that: co Lour does
not exist. And it is quite right to complain - you have
not created a variable whose value is : co Lour. You can
fix this bug in one of two ways. First, you already know
how to put the variable whose value is to be : co Lour in
the title line of a procedure: '

poLy 'side 'angle 'colour

17.5



Variables

17.6

This creates a box for the variable whose name is ' co Lour
in po Ly, and so makes' co lour a local variable in po Ly.
If you fix the bug in this way, you will have to type in a
number for' co Lou r each time you run the procedure.

A second method of fixing the bug is to create a box for
I co lou r, and put a value in it, direct from the keyboard.
The number you put in the box stays there until you change
it. You use rnake to create this box. Type:

make 'colour 3

This creates a keyboard level box:

'coLour

We can think of procedures as being at lower levels than
the keyboard. For example:

Level 0 keyboard

Levell poly

Level 2 repts

When you make a box labelled' co lou r direct from the
keyboard, it is a level 0 box, and it can be borrowed by
any procedures at lower levels which do not have their own
, co lou r boxes.

po Ly 's ide 'ang le is a procedure at the next level down
(levell). You call it from the keyboard by typing a
command such as po ly 50 120. po Ly itself calls the
procedure repts, which works out how many repetitions of a
side of the polygon must be drawn. repts is at Level 2,
because it is called by the levell procedure po ly. The
diagram shows what happens when you run these procedures.



Variables

If you type po l y 50 120 this is what happens as the
procedure runs. (Remember that a value must be put into a
box' co lour first).

make 'co lour 3! Putthe value 3 into a box I co lour.

poly

Isere
repeat (repts : ang le)

! Procedure po ly calls procedure repts,
passing the value 120 to repts.

repts

I
result (360/ :angle)

1
resu L t returns the result of repts
120 to the calling procedure po ly .

[forward :side right :angle]
The remaining commands in the calling
line of po ly happen. The value in
box's ide is 50 and in box' ang le
is 120.

'side 'angle
You typed in po ly '50 120
putting 50 into a box' si de
and 120 into a box' ang leo

:colour
The value 3 is borrowed from
the' co lou r box in level 0 because
po ly has not' co lou r box of its own.

'angle
Procedure rept s creates a box 'angle
and fills it with the value passed
over.

The box labelled' co lour, created at level 0, can be used
by every procedure in the workspace, because whenever a
procedure is called, that procedure is below level O.The

17.7



Variables

17.8

box' co lou r at level 0 is often called a global variable,
because it can be borrowed by all level 1 procedures, and
by all the procedures which they call. Hence, all the
procedures in the workspace can borrow a level 0 variable;
that is why it is called a global variable.

Now you have made a 'co lour box and put the value 3 into
it; the procedure po Ly , side ' ang le will run and draw
using the colour 3.

Other procedures can make use of the value you have given
to the global variable' co Lour. Try:

sqcoL 'side
setpc :colour
repeat 4 [forward :side right 90]

Logo will not complain about this, because' co Lour is at
level 0 and so is a global variable; it has the value 3.
You can also make global variables from within procedures.
Because Logo can only create boxes for local variables
when you write the names of the variables in the title
line of a procedure, it follows that if you use make to
create a new variable within a procedure, the procedure
does not have a box for it, and so Logo makes a new box
at Level O.

For example, if you do:

sq 'side
make 'shade 4
setpc :shade
repeat 4 [forward :side right 90]

then' shade is a new name, so it becomes the name of a
global variable and can be used by any procedure. When you
have run sq, type:

print :shade
print :side



Variables

The variable's hade is a global variable, accessible from
the keyboard, so Logo replies to pri nt : shade with 4.
lsi de is local to the procedure sq, and level 0 cannot
look into the lsi de box belonging to sq. Logo complains
that you have not created a variable called's ide. It is
inside the procedure sq, so it can never be accessible to
a keyboard command to print its value.

Changing Colours

In many of your drawings, you must have wanted to change
colours automatically within a procedure, so as to produce
a multi-coloured effect. A po lyspi would look very
handsome if successive sides were in different colours.
You can now arrange for this to happen - here is a
possible colour changing procedure:

chcol
make 'col <:col + 1)
if <:coL = 16) [make 'col 1]
setpc :col

This procedure will not run by itself. When you ask it to
make 'co l <: co L + 1) it needs to know what number: co l
represents, and as you have not told it, it complains.
Thus, you must be sure to make a higher level co l box,
either by making it directly from the keyboard at Level 0,
or you can make the co lourbox within a procedure which
calls hco L.Here is one possibility:

tricol 'side
make 'col 1
repeat 3 [forward :side right 120 chcol]

Project

5. Do some colour changes within procedures such as
po lyspi. You might also try random colour changes.

17.9



Building Up Lists

Chapter 18
Building Up Lists

A Random Sentence Generator

Projects generating sentences enable a learner to build up
random sentences, and to see whether these sentences seem
right; this may help the learner to focus on the
grammatical features of writing. In this chapter we shall
build a very simple procedure of this type. At each

. recursion, Nimbus asks you to teach it a noun and a
verb, and it then makes a random sentence from the lists
of nouns and verbs built up so far.

The basic structure is:

message
noun
verb
makesent
message

message is a superprocedure; its only function is to call
the procedures noun and ve rb, which ask you to teach it
words, and then the procedure makesent, which makes and
prints the random sentence. Recursion is then used to
repeat the procedure message, so that the lists of nouns
and verbs grow every time message is called.

The procedures noun and verb use the command read List to
obtain a word as input from the keyboard and store it
temporarily as a list in Iinp.

noun
type [Teach me a noun]
make I;np read Li st
make 'nounL putLast :nounL first :inp

18.1



Building Up Lists

verb
type [Teach me a verb]
rnake ' i np read Lis t
make 'verbL putLast :verbL first :inp

In order to run these procedures, you will need to create
the boxes' noun Land' verb L,and put empty lists in
them. You can do this from the keyboard with:

make 'noun L []

and

make 'verbL []

putlast and putfirst

The command put Last has been used to add new words to the
lists' noun Land' ve rb L.The syntax is:

The number, war or ist is added to the end of the list
which is the first input. So, if:

'nounL

contains the list [dogs cats], and [rabbi ts] is contained
in ' i np, then:

make 'nounL putLast :nounL (first :inp)

constructs the list:

[dogs cats rabbits]
18.2



Building Up Lists

in 'noun l. It is necessary to use fir s t : i np, rather
than just: i np, to be tacked on to the end of ' noun l,
because: inp is the list [rabbi tsJ, and we only
want the word' rabbi ts to be added to the list.

There is another command, pu t fir s t, which can be used to
add an expression at the beginning of a list. Its syntax
IS:

putfi rst nwll ...••.....•r---- ~
~

In the procedures noun and verb, it does not matter
whether the new words which the child teaches Nimbus are
added at the beginning or the end of the l{stsof nouns
and verbs, because the next move will be to select random
words from the lists. In other programs, it may be
extremely important to know at which end of a list a new
expr:ession is put.

Choosing a Random Member of a List

The following procedure chooses a random word from the
list of words stored in the list ' lis tn. The word is
returned as a resu l t.

randwd 'listn
if emptyq :listn [result [JJ
result :listn # pick count :list

The primitive count counts the number of elements in a
list, or the number of letters in a word. pic k chooses a
random whole number in the range 1 to the number input. We
then have to pick out the chosen element of the list.

18.3



Building Up Lists

RM Logo has the operator # which selects an element
from a list, for example: noun 1 # 3 gives the third word
in the list: noun 1

Making the Random Sentence

To build the random sentence, we choose a random word from
I noun l and a random word from' ve rb l, enclose each
one in a list, and then join the two lists together into a
single list by using the primitive sentence, as follows:

makesent
make 'sub j randwd : noun l
make 'verb randwd :verbl
make 'sent sentence <sentence 'the : subj) :vert
say :sent

Now the procedure message, given at the beginning of this
chapter, can be used to put together the procedures into
the complete program. A superprocedure, wr i t e r, can be
used to avoid you having to create' noun Land' ve rb Lat
the keyboard at the start of a session:

writer
make 'nounl []
make 'verbL []
message

Projects

1. Improve message. You might want longer sentences, or
you might want the user to be able to to view and

, change the word lists. You might want to avoid having
to teach Nimbus new words at every round.

18.4



Building Up Lists

2. Write some (pseudo-Japanese) Haiku poetry using random
choices from word lists. A Haiku poem has three lines,
and is structured like the following example:

Late cool showers fall.
Tiny blossoms open and
greet the new warm sun.

The structure is:

Adjective adjective noun verb.
Adjective noun verb and
verb the adjective adjective verb.

Haiku poems are always about nature and its beauties,
so you will need lists of appropriate nouns,
adjectives and verbs to go in each place in the poem.

You could also work out how many different Haiku poems
could be made from the word lists which you have
supplied to Logo.

18.5



More About Recursion

Chapter 19
More About Recursion

Drawing a Tree

A very simple procedure draws two branches of a tree, and
finishes with the turtle facing the way it started.

vee 'Length
Left 45
forward : Length
backward : Length
ri ght 90
forward : Length
backward : Length
Left 45

We can make a tree by drawing a smaller vee at the tip of
each branch, and continuing to do this recursively.

tree 'Length
Left 45
forward : Length ....•••I---------- draw a branch
tree : Length/2 l1li( draw small tree at end of branch
backward : Length
ri ght 90
forward : Length ....•••I---------- draw a branch
tree : Length/ 2 .• draw small tree at end of branch
backward : Length
Left 45

Unfortunately, this remains in the left-hand branch, and
continues until the computer runs out of memory. To see
why, think about how the procedure tree can stop.

We need to stop the recursion at an appropriate point when
the branches are short.

19.1



More About Recursion

Put in the stop line:

if: Length < 2 [stop]

after the title line, so that you have:

tree 'Length
if :Length < 2 [stop]
Left 45
forward :Length
tree :Length/2
backward :Length
right 90
forward :Length
tree :Length/2
backward :Length
left 45

The best place to put a stop line in recursion is usually
after the title. Notice that the command stop stops
execution of the procedure in which it occurs, and returns
control to the procedure which called it. If you ever want
to stop completely and return control to the keyboard, use
the command escape.

After this change, the whole tree neatly draws itself.

Tracing through Programs

RM Logo has some facilities for tracing the progress
of your programs, which may help you to follow what is
going on in recursion. Type:

waLk 'tree

Then when you execute tree, Logo will print out what it is
doing at each line, and pause for you to press,
<ENTER> before carrying out the command. To get rid of
wa Lk,use: unwa Lk 'tree

19.2



More About Recursion

Variations on tree

You can make one branch of vee longer than the other.
You can vary the angle between branches (use a variable to
do this).

You can use different stop rules. The one below uses the
variable depth - each branch grows a tree of depth one
less than the previous branch.

tree1 'length 'depth
if :depth = 0 [stop]
Left 45
forward : Length
tree1 : Length/2 :depth-1
backward : Length
ri ght 90
forward : Length
tree1 : Length/2 :depth-1
backwa rd : length
Left 45

Snowflake Curves

A Snowflake Curve, as well as being very beautiful, has
the strange mathematical property that if it could be
drawn completely if w~uld be of infinite length, while
fitting in to the area of a basic hexagon which encloses
the snowflake. Of course the computer cannot actually draw
a curve of infinite length, but Logo enables us to draw a
good enough approximation to see how it would work
ideally, and so help us to visualise a curve of infinite
length fitting in to a finite area.

Curves of this type were discovered late in the nineteenth
century, and for some time they were regarded as tiresome
mathematical paradoxes. Drawing curves of this type, and
working out the lengths of their perimeters, may enable
you to realise how the perimeter of a shape may be greatly

19.3



More About Recursion

increased without making much difference to the area.
People often find this concept very difficult, because we
have little experience which would enable us to form the
idea.

We start building the snowflake by drawing an equilateral
triangle of convenient size; a good length for each side
is either 81 or 192 turtle steps, because we are going to
do a lot of dividing by 3.

The way to build the Snowflake is to replace the middle
third of each side by a 'tooth' which sticks out from the
side:

This produces a new shape, which looks like this:

19.4



More About Recursion

It has a longer perimeter - putting the 'tooth' on each
side increases the length of that side by one third. In
the following example, the middle third of the line was of
length 27, and has been replaced by 2 lines of length
27 each. The length of the side of the triangle has been
multiplied by 4/3. The Snowflake curve is drawn by
continuing to do this - whenever we see a line, we replace
the middle third of it by a 'tooth', and so multiply its
length by 4/3. The next step is shown in the following
diagram:

We could, in theory, go on doing this for ever, and
recursion is an appropriate way of programming it.
However, in practice a stopping method is needed; we shall
stop when the size of a 'tooth' is less than a limiting
short length such as 1 unit.

The basic pattern for drawing a tooth is:

tooth I length
forward :length/3
left 60
forward :length/3
right 120
forward :length/3
left 60
forward :length/3

19.5



More About Recursion

This procedure can be adapted as the basis for a recursive
procedure to draw a side of the snowflake, like this:

side 'length 'lim
if: length < : lim [forward :length stop]
side :length/3 :Lim
Left 60
side :length/3 :lim
right 120
side :length/3 :lim
Left 60
side :length/3 :Lim
Try typing side 81 2
The whole snowflake can now be drawn:

snowflake 'length 'Lim
side :length :lim
right 120
snowflake :Length :Lim
You could experiment drawing snowflakes with different
stopping conditions, such as:

snowflake 81 27
snowflake 81 9
snowflake 81 3
snowf lake 81 1

19.6



Project

More About Recursion

1. The C-curve is another recursively drawn curve. The
idea here is to replace a line by an 'elbow'
consisting of two lines drawn at right angles.

The basic procedure to replace a line of given length
by an 'elbow' is:

elbow 'length
left 45
forward :length / sqt 2
ri ght 90
forwaard :length / sqt 2
left 45

Incorporate this into a recursive procedure with a
stop when: leng t h < : l i mi t. A possible method follows:

elbow 'length 'lim
if : length < :lim [forward :length stop]
left 45
elbow :length / sqt 2 :lim
ri ght 90
elbow :length / sqt 2 :lim
left 45

The 'Dragon' curve is a similar curve, which has elbows
pointing alternately on the two sides of the previous
line. Experiment with this.

19.7



Logo Primitives

Chapter 20
List of Logo Primitives

In this chapter, the Logo primitives which have been used
in this book are listed in groups (not in alphabetical
order). These primitives are the greater part of the
complete set of RM Logo primitives. A complete list will
be found in the RM Logo reference book and the RM Logo
reference card.

The commands are grouped according to their function.

Graphics Commands

arcl
arcr
backward, bk
centre
clean
cleantext, ctx
cs
drop
fence
forward, fd
heading
hideturtLe, ht
labe l
left, It
lif t
nofence
right, rt
rubber
setbg
setc
setdir
seth

8.4
8.4
1.4
1.4
1.4
6.21.3
1.6
3.4
1.4
8.1
6.1
2.11.4
1.6
3.41.4
1.8
1.7
1.7

16.3
8.1

20.1



Logo Primitives

setpc
setpos
setspeed
setx
sety
showtu rt le, st
tell
textscreen, ts
vanish

1.6
9.6

16.3
9.6
9.6
8.1
8.52.3

16.2
Numerical Commands

+ 2.2
2.2
2.2
2.2

11.1
11.1
11.2
11.1
11.3
11.3
11.3
11.2
11.2

*
add
divide, div
int
multiply, mul
pick
random
remainder, rem
share
sqt

Building Procedures
build
edit
function keys
scrap

4.1
5.1
4.2
4.3

Debugging
unwalk
walk

19.2
19.2

20.2



Logo Primitives

Words and Lists

but last
count
first
last
putfirst
put last
rest
sentence, se

13.4
18.4
13.2
13.4
18.3
18.2
13.3
9.7

Conditionals

both
emptyq
equalq
if [ ...J [ ... J
keyq
listq
memberq
not
numberq
xor
wordq

11.5
11.5
15.3
15.4
15.4
11.4
14.4
12.7
15.4
15.1
12.7
15.4
12.7

< , >
=

Control

do [ ...J un t i' l ...
escape
forever
repeat
result
stop
whi le ••• [ ••• ]

14.5
19.3
5.4
3.3

10.4
19.2
14.6

20.3



Logo Primitives

User Input and Output

key 14.1
print 12.6
readlist 12.2
say 10.2
set cursor 12.8
type 12.8

Variables

make 10.1

Information and Files

Load 4.4
save 4.4
titles 6.2

20.1



What a wonderful book! I can now make my Nimbus a part of
my imagination. I'll draw castles with flags fluttering in the
breeze, and draw the treasures that are-stored within.

I'll jump in a truck and drive to the sea and watch the yachts
racing. When the wind gets up they'll blow off course, and
finally be blown from the screen.

When I look up in the sky I think about the planets and I can
map them out on my Nimbus with Logo. I can come back to
earth and draw birds and trees and a sun that smiles all day
long.

Logo earns its keep: it holds lots of information for me so I can
always find it.

Logo is magical: I can draw what I please in the colour I
choose.

For instance I can draw the front cover picture in lots of
colours and watch it go on growing, just by typing: swaLLow

swaLLow
cs
star 6 0
teLL [1 23456] setx -60
setdi r 90 setspeed 0.3
forever [fd 1 1t 2]

star 'number 'angLe
if eqq :number 0 (stop]
teLL :number setpc :number setc 8 + :number seth :angLe
star (:number-1) (:angLe+60>




