EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT MATH COPROCESSORS

This document has been created to provide the net.community with some

detailed information about mathematical coprocessors for the Intel 80x86 CPU

family. It may also help to answer some of the FAQs (frequently asked

questions) about this topic. The primary focus of this document is on 80387-

compatible chips, but there is also some information on the other chips in

the 80x87 family and the Weitek family of coprocessors. Care was taken to

make the information included as accurate as possible. If you think you have

discovered erroneous information in this text, or think that a certain detail

needs to be clarified, or want to suggest additions, feel free to contact me

at:

         juffa@ira.uka.de

         or at my SnailMail address:

         Norbert Juffa

         Wielandtstr. 14

         76137 Karlsruhe

         Germany

This is the sixth version of this document (dated 01-Oct-94) and I'd like

to thank those who have helped improving it by commenting on the previous

versions:

         Fred Dunlap (fred@cyrix.com), Peter Forsberg (peter@vnet.ibm.com),

         Richard Krehbiel (richk@grevyn.com), Arto Viitanen (av@cs.uta.fi),

         Jerry Whelan (guru@stasi.bradley.edu),

         Eric Johnson (johnson%camax01@uunet.UU.NET), Warren Ferguson

         (ferguson@seas.smu.edu), Bengt Ask (f89ba@efd.lth.se), Thomas Hoberg

         (tmh@prosun.first.gmd.de), Nhuan Doduc (ndoduc@framentec.fr), John

         Levine (johnl@iecc.cambridge.ma.us), David Hough (dgh@validgh.com),

         Duncan Murdoch (dmurdoch@mast.QueensU.CA), Benjamin Eitan

         (benny.iil.intel.com)

A very special thanks goes to David Ruggiero (osiris@halcyon.halcyon.com),

who did a great job editing and formatting this article. Thanks David!

Contents of this document

-------------------------

1)  What are math coprocessors?

2)  How PC programs use a math coprocessor

3)  Which applications benefit from a math coprocessor

4)  Potential performance gains with a math coprocessor

5)  How various math coprocessors work

6)  Coprocessor emulator software

7)  Installing a math coprocessor

8)  Detailed description and specifications for all available math

    coprocessor chips

9)  Finding out which coprocessor you have (the COMPTEST program)

10) Current coprocessor prices and purchasing advice

11) The coprocessor benchmark programs (performance comparisons of

    available math coprocessors using various CPUs)

12) Clock-cycle timings for each coprocessor instruction

13) Accuracy tests and IEEE-754 conformance for various coprocessors

14) Accuracy of transcendental function calculations for various coprocessors

15) Compatibility tests with Intel's 387DX / the SMDIAG program

16) References (literature)

17) Addresses of manufacturers of math coprocessors

18) Appendix A: Test programs for partial compatibility and accuracy checks

19) Appendix B: Benchmark programs TRNSFORM and PEAKFLOP

===========================

What are math coprocessors?

===========================

A coprocessor in the traditional sense is a processor, separate from the main

CPU, that extends the capabilities of a CPU in a transparent manner. This

means that from the program's (and programmer's) point of view, the CPU and

coprocessor together look like a single, unified machine.

The 80x87 family of math coprocessors (also known as MCPs [Math

CoProcessors], NDPs [Numerical Data Processors], NPXs [Numerical Processor

eXtensions], or FPUs [Floating-Point Units], or simply "math chips") are

typical examples of such coprocessors. The 80x86 CPUs, with the exception of

the 80486 (which has a built-in FPU) can only handle 8, 16, or 32 bit

integers as their basic data types. However, many PC-based applications

require the use of not only integers, but floating-point numbers. Simply put,

the use of floating-point numbers enables a binary representation of not only

integers, but also fractional values over a wide range. A common application

of floating-point numbers is in scientific applications, where very small

(e.g., Planck's constant) and very large numbers (e.g., speed of light) must

be accurately expressed. But floating-point numbers are also useful for

business applications such as computing interest, and in the geometric

calculations inherent in CAD/CAM processing.

Because the instruction sets of all 80x86 CPUs directly support only integers

and calculations upon integers, floating-point numbers and operations on them

must be programmed indirectly by using series of CPU integer instructions.

This means that computations when floating-point numbers are used are far

slower than normal, integer calculations. And this is where the 80x87

coprocessors come in: adding an 80x87 to an 80x86-based system augments the

CPU architecture with eight floating-point registers, five additional data

types and over 70 additional instructions, all designed to deal directly with

floating-point numbers as a basic data type. This removes the 'penalty' for

floating-point computations, and greatly increases overall system performance

for applications which depend heavily on these calculations.

In addition to being able to quickly execute load/store operations on

floating-point numbers, the 80x87 coprocessors can directly perform all the

basic arithmetic operation on them. Besides "knowing" how to add, subtract,

multiply and divide floating-point numbers, they can also operate on them to

perform comparisons, square roots, transcendental functions (such as logarithms

and sine/cosine/tangent), and compute their absolute value and remainder.

Like most things in life, floating-point arithmetic has been standardized.

The relevant standard (to which I will refer quite often in this document) is

the "IEEE-754 Standard for Binary Floating-Point Arithmetic" [10,11]. The

standard specifies numeric formats, value sets and how the basic arithmetic

(+,-,*,/,sqrt, remainder) has to work. All the coprocessors covered in this

document claim full or at least partial compliance with the IEEE-754

standard.

=================================================

How PC programs use 80x87 and Weitek coprocessors

=================================================

The basic data type used by all 80x87 coprocessors is an 80-bit long

floating-point number. This data type (called "temporary real" or "double

extended precision") can directly represent numbers which range in size

between 3.36*10^-4932 and 1.19*10^4932 (3.65*10^-4951 to 1.19*10^4932

including denormal numbers) where '^' denotes the power operator. (For those

familiar with floating-point formats, this format has 64 mantissa bits, 15

exponent bits and 1 sign bit, for the total of 80 bits.) This format provides

a precision of about 19 decimal places. 80x87s can also handle additional

data types that are converted to/from the internal format upon being loaded

or stored to/from the coprocessor. These include 16 bit, 32 bit, and 64 bit

integers as well as a 18 digit BCD (binary coded decimal) data type occupying

10 bytes and providing 18 decimal digits.

The 80x87 also supports two additional floating-point types. The short real

data type (also called "single-precision") has 32 bits that split into 23

mantissa bits, 8 exponent bit and a sign bit. By using the "hidden bit"

technique, the effective length of the mantissa is increased to 24 bits. (The

hidden bit technique exploits the fact that for normalized floating-point

numbers, the mantissa m always is in the range 1 <= m < 2. Since the first

mantissa bit represents the integer part of the mantissa, it is always set

for normalized numbers, and therefore need not be stored, as it is guaranteed

to always be 1.) The IEEE single-precision format provides a precision of

about 6-7 decimal places and can represent numbers between 1.17*10^-38 and

3.40*10^38 (1.40*10^-45 to 3.40*10^38 including denormal numbers). The long

real, or double-precision, data type has 64 bits, consisting of 52 mantissa

bits, 11 exponent bits, and the sign bit. It provides 15-16 decimal digits of

precision and can handle numbers from 2.22*10^-308 to 1.79*10^308 (4.94*10^-

324 to 1.79*10^308 including denormal numbers). (This format also uses the

hidden bit technique to provide effectively 53 mantissa bits.)

The eight registers in the 80x87 are organized in a stack-like manner which

takes some time getting used to if one programs the coprocessor directly in

assembly language. However, nowadays the compilers or interpreters for most

high level languages (HLLs) can give a programmer easy access to the

coprocessor's data types and use their instructions, so there is not much

need to deal directly with the rather unusual architecture of the 80x87.

The architecture of the Weitek chips differs significantly from the 80x87.

Strictly speaking, the Weitek Abacus 3167 and 4167 are not coprocessors in

that they do not transparently extend the CPU architecture; rather, they

could be described as highly-specialized, memory-mapped IO devices. But as

the term "coprocessor" has been traditionally used for these chips, they will

be referred to as such here.

The Weitek coprocessors have a RISC-like architecture which has been tuned

for maximum performance. Only a small instruction set has been implemented in

the chip, but each instruction executes at a very high speed (usually only a

few clock cycles each). Instructions available include load/store, add,

subtract, subtract reverse, multiply, multiply and negate, multiply and

accumulate, multiply and take absolute value, divide reverse, negate,

absolute value, compare/test, convert fix/float, and square root. In contrast

to the 80x87 family, the Weitek Abacus does not support a double extended

format, has no built-in transcendental functions, and does not support

denormals. The resources required to implement such features have instead

been devoted to implement the basic arithmetic operations as fast as

possible.

While the 80x87 coprocessors perform all internal calculations in double

extended precision and therefore have about the same performance for single

and double-precision calculations, the Weitek features explicit single and

double-precision operations. For applications that require only single-

precision operations, the Weitek can therefore provide very high performance,

as single-precision operations are about twice as fast as their double-

precision counterparts. Also, since the Weitek Abacus has more registers than

the 80x87 coprocessors (31 versus 8), values can be kept in registers more

often and have to be loaded from memory less frequently. This also leads to

performance gains.

The Weitek's register file consists of 31 32-bit registers, each one capable

of holding an IEEE single-precision number. Pairs of consecutive single-

precision registers can also be used as 64-bit IEEE double-precision

registers; thus there are 15 double-precision registers. The Weitek register

file has the standard organization like the register files in the 80386, not

the special stack-like organization of the 80x87 coprocessors.

To the main CPU, the Weitek Abacus appears as a 64 KB block of memory

starting at physical address 0C0000000h. Each address in this range

corresponds to a coprocessor instruction. Accessing a specified memory

location within this block with a MOV instruction causes the corresponding

Weitek instruction to be executed. (The instructions have been cleverly

assigned to memory locations in such a way that loads to consecutive

coprocessor registers can make use of the 386/486 MOVS string instruction.)

This memory-mapped interface is much faster than the IO-oriented protocol

that is used to couple the CPU to an 80287 or 80387 coprocessor. The Weitek's

memory block can actually be assigned to any logical address using the MMU

(memory management unit) in the 386/486's protected and virtual modes. This

also means that the Weitek Abacus *cannot* be used in the real mode of those

processors, since their physical starting address (0C0000000h) is not within

the 1 MByte address range and the MMU is inoperable in real mode. However,

DOS programs can make use of the Weitek by using a DOS extender or a memory

manager (such as QEMM or EMM386) that runs in protected/virtual mode itself

and can therefore map the Weitek's memory block to any desired location in

the 1 MByte address range.

Typically the FS segment register is then set up to point to the Weitek's

memory block. On the 80486, this technique has severe drawbacks, as using the

FS: prefix takes an additional clock cycle, thereby nearly halving the

performance of the 4167. Most DOS-based compilers exhibit this problem, so

the only way around it is to code in assembly language [75]. The Weitek

Abacus 3167 and 4167 are also supported by the UNIX operating system [33].

==========================================================

Which application programs benefit from a math coprocessor

==========================================================

According to the Intel 387DX User's Guide, there are more than 2100

commercial programs that can make use of a 387-compatible coprocessor. Every

program that uses floating-point arithmetic somewhere and contains the

instructions to support an 80x87 or Weitek chip can gain speed by installing

one. However, the speedup will vary from program to program (and even within

the same program) depending on how computation-intensive the program or

operation within the program is. Typical applications that benefit from the

use of a math coprocessor are:

   - CAD programs (AutoCAD, VersaCAD, GenericCAD)

   - Spreadsheet programs (Lotus 1-2-3, Excel, Quattro, Wingz)

   - Business graphics programs (Arts&Letters, Freedom of Press, Freelance)

   - Mathematical analysis and statistical programs (Mathematica, TKSolver,

       SPSS/PC, Statgraphics)

   - Database programs (dBase IV, FoxBase, Paradox, Revelation)

Note that for spreadsheets and databases, a coprocessor only helps if some

kind of floating-point computation is performed; this is true more often for

spreadsheets than for databases. Also note that the speed of many programs

depends quite heavily on factors such the speed of the graphics adapter (CAD)

or the disk performance (databases), so the computational performance is only

a (small) part of the total performance of the application. There are some

programs that won't run without a coprocessor, among them AutoCAD (R10 and

later) and Mathematica.

Most GUIs (graphical user interfaces) such as Microsoft Windows or the OS/2

Presentation Manager do *not* gain additional speed from using a

*mathematical* coprocessor, since their graphics operations only use integer

arithmetic [71]. They *will* benefit from a graphics board with a graphics

"coprocessor" that speeds up certain common graphics operations such as

BitBlt or line drawing. A few GUIs used on PCs, such as X-Windows, use a

certain amount of floating-point operations for operations such as arc

drawing. However, the use of floating-point operations in X-Windows seems to

have decreased significantly in versions after X11R3, so the overall

performance impact of a coprocessor is small [72]. Applications running under

any GUI may take advantage of a math coprocessor, of course (for example,

Microsoft Excel running under Windows).

While support for 80x87 coprocessors is very common in application programs,

the Weitek Abacus coprocessors do not enjoy such widespread support. Due to

their higher price, only a few high-end PCs have been equipped with Weitek

coprocessors. Some machines, such as IBM's PS/2 series, do not even have

sockets to accommodate them. Therefore, most of the programs that support

these coprocessors are also high-end products, like AutoCAD and Versacad-386.

==============================================

Potential performance gains with a coprocessor

==============================================

The Intel Math Coprocessor Utilities Disk that accompanies the Intel 387DX

coprocessor has a demonstration program that shows the speedup of certain

application programs when run with the Intel coprocessor versus a system with

no coprocessor:

         Application       Time w/o 387   Time w/387    Speedup

         Art&Letters          87.0 sec      34.8 sec     150%

         Quattro Pro           8.0 sec       4.0 sec     100%

         Wingz                17.9 sec       9.1 sec      97%

         Mathematica         420.2 sec     337.0 sec      25%

         The following table is an excerpt from [70]:

         Application        Time w/o 387   Time w/387  Speedup

         Corel Draw          471.0 sec     416.0 sec      13%

         Freedom Of Press    163.0 sec      77.0 sec     112%

         Lotus 1-2-3         257.0 sec      43.0 sec     597%

         The following table is an excerpt from [25]:

         Application        Time w/o 387   Time w/387  Speedup

         Design CAD, Test1    98.1 sec      50.0 sec      96%

         Design CAD, Test2    75.3 sec      35.0 sec     115%

         Excel, Test 1         9.2 sec       6.8 sec      35%

         Excel, Test 1        12.6 sec       9.3 sec      35%

Note that coprocessor performance also depends on the motherboard, or more

specifically, the chipset used on the motherboard. In [34] and [35]

identically configured motherboards using different 386 chipsets were tested.

Among other tests a coprocessor benchmark was run which is based on a fractal

computation and its execution time recorded. The following tables showing

coprocessor performance to vary with the chipset have been copied from these

articles in abridged form:

                  Cyrix                                   Cyrix

    chip set      387+                 chip set           83D87

    Opti, 40 MHz  24.57 sec   97.0%    PC-Chips, 33 MHz  26.97 sec   93.0%

    Elite,40 MHz  24.46 sec   97.4%    UMC,      33 MHz  27.69 sec   90.5%

    ACT,  40 MHz  23.84 sec  100.0%    Headland, 33 MHz  25.08 sec  100.0%

    Forex,40 MHz  23.84 sec  100.0%    Eteq,     33 MHz  27.38 sec   91.6%

This shows that performance of the same coprocessor can vary by up to ~10%

depending on the chipset used on your board, at least for 386 motherboards

(similar numbers for 286, 386SX, and 486 are, unfortunately, not available).

The benchmarks for this article were run on a motherboard with the Forex chip

set, one of the fastest 386 chip sets available, and not only with respect to

floating-point performance [35].

==================================

How various math coprocessors work

==================================

In any 80x86 system with an 80x87 math coprocessor, CPU instructions and

coprocessor instructions are executed concurrently. This means that the CPU

can execute CPU instructions while the coprocessor executes a coprocessor

instruction at the same time. The concurrency is restricted somewhat by the

fact that the CPU has to aid the coprocessor in certain operations. As the

CPU and the coprocessor are fed from the same instruction stream and both

instruction streams may operate on the same data, there has to be a

synchronizing mechanism between the CPU and the coprocessor.

The 8087

--------

In 8086/8088 systems with 8087 coprocessors, both chips look at every opcode

coming in from the bus. To do this, both chips have the same BIU (bus

interface unit) and the 8086 BIU sends the status signals of its prefetch

queue to the 8087 BIU. This insures that both processors always decode the

same instructions in parallel. Since all coprocessor instruction start with

the bit pattern 11011, it is easy for the 8087 to ignore all other

instructions. Likewise the CPU ignores all coprocessor instructions, unless

they access memory. In this case, the CPU computes the address of the LSB

(least significant byte) of the memory operand and does a dummy read. The

8087 then takes the data from the data bus. If more than one memory access is

needed to load an memory operand, the 8087 requests the bus from the CPU,

generates the consecutive addresses of the operand's bytes and fetches them

from the data bus. After completing the operation, the 8087 hands bus control

back to the CPU. Since 8087 and CPU are hooked up to the same synchronous

bus, they must run at the same speed. This means that with the 8087, only

synchronous operation of CPU and coprocessor is possible.

Another 8087 coprocessor instruction can only be started if the previous one

has been completed in the NEU (numerical execution unit) of the 8087. To

prevent the 8086 from decoding a new coprocessor instruction while the 8087

is still executing the previous coprocessor instruction, a coding mechanism

is employed:  All 8087-capable compilers and assemblers automatically

generate a WAIT instruction before each coprocessor instruction. The WAIT

instruction tests the CPU's /TEST pin and suspends execution until its input

becomes "LOW". In all 8086/8087 systems, the 8086 /TEST pin is connected to

the 8087 BUSY pin. As long as the NEU executes a coprocessor instruction, it

forces its BUSY pin "HIGH"; thus, the WAIT opcode preceding the coprocessor

instruction stops the CPU until any still-executing coprocessor instruction

has finished.

The same synchronization is used before the CPU accesses data that was

written by the coprocessor. A WAIT instruction after any coprocessor

instruction that writes to memory causes the CPU to stop until the

coprocessor has completed transfer of the data to memory, after which the CPU

can safely access it.

The 80287

---------

The 80287 coprocessor-CPU interface is totally different from the 8087

design. Since the 80286 implements memory protection via an MMU based on

segmentation, it would have been much too expensive to duplicate the whole

memory protection logic on the coprocessor, which an interface solution

similar to the 8087 would have required. Instead, in an 80286/80287 system,

the CPU fetches and stores all opcodes and operands for the coprocessor.

Information is then passed through the CPU ports F8h-FFh. (As these ports are

accessible under program control, care must be taken in user programs not to

accidentally perform write operations to them, as this could corrupt data in

the math coprocessor.)

The 8087/8087 combination can be characterized as a cooperation of partners

with equal rights, while the 80286/287 is more a master-slave relationship.

This makes synchronization easier, since the complete instruction and data

flow of the coprocessor goes through the CPU. Before executing most

coprocessor instructions, the 80286 tests its /BUSY pin, which is tied to the

287 coprocessor and signals if the 80287 is still executing a previous

coprocessor instruction or has encountered an exception. The 80286 then waits

until the /BUSY signal goes to "low" before loading the next coprocessor

instruction into the 80287. Therefore, a WAIT instruction before every

coprocessor instruction is not required. These WAITs are permissible, but not

necessary, in 80287 programs. The second form of WAIT synchronization (after

the coprocessor has written a memory operand) *is* still necessary on 286/287

systems.

The execution unit of the 80287 is practically identical to that of the 8087;

that is, nearly all coprocessor instructions execute in the same number of

clock cycles on both coprocessors. However, due to the additional overhead of

the 80287's CPU/coprocessor interface (at least ~40 clock cycles), an 8 MHz

80286/80287 combination can have lower floating-point performance than an

8086/8087 system running at the same speed. Additionally, older 286 boards

were often configured to run the coprocessor at only 2/3 the speed of the

CPU, making use of the ability of the 80287 to run asynchronously: The 80287

has a CKM pin that causes the incoming system clock to be divided by three

for the coprocessor if it is tied to ground. The 80286 always divides the

system clock by two internally, hence the final ratio of 2/3. However, when

the CKM (ClocK Mode) pin is tied high on the 80287, it does not divide the

CLK input. This feature has been exploited by the maker of coprocessor speed

sockets. These sockets tie CKM high and supply their own CLK signal with a

built-in oscillator, thereby allowing the 80287 or compatible to run at a

much higher speed than the CPU. With an IIT or Cyrix 287 one can have a 20

MHz coprocessor running with a 8 MHz 80286! Note, however, that the floating-

point performance of such a configuration does not scale linearly with the

coprocessor clock, since all the data has to be passed through the much

slower CPU. If the coprocessor executes mostly simple instructions (such as

addition and multiplication), doubling the coprocessor clock to 20 MHz in a

10 MHz system does not show any performance increase at all [24].

The Intel 80287XL, the Cyrix 82S87, and the IIT 2C87 contain the internals of

a 387 coprocessor, but are pin-compatible to the original 287. These chips

divide the system clock by two internally, as opposed to three in the

original 80287. Since the 80286 also divides the system clock by two, they

usually run synchronously with respect to the CPU, although they can also be

run asynchronously.

The 80387

---------

The coprocessor interface in 80386/80387 systems is very similar to the one

found in 286/287 systems. However, to prevent corruption of the coprocessor's

contents by programming errors, the IO ports 800000F8h-800000FFh are used,

which are not accessible to programs. The CPU/coprocessor interface has been

optimized and uses full 32-bit transfers; the interface overhead has been

reduced to about 14-20 clock cycles. For some operations on the 387 'clones'

that take less than about 16 clock cycles to complete, this overhead

effectively limits the execution rate of coprocessor instructions. The only

sensible solution to provide even higher floating-point performance was to

integrate the CPU and coprocessor functionality onto the same chip, which

is exactly what Intel did with the 80486 CPU. The FPU in the 486 also benefits

from the instruction pipelining and from the on-chip cache.

=====================

Coprocessor emulators

=====================

In the absence of a coprocessor, floating-point calculations are often

performed by a software package that simulates its operations. Such a program

is called a coprocessor emulator. Simulating the coprocessor has the

advantage for application programs that identical code can be generated for

use with either the coprocessor and the emulator, so that it's possible to

write programs that run on any system without regard to whether a coprocessor

is present or not. Whether the program will use an actual coprocessor or

software emulating it can easily be determined at run-time by detecting the

presence or absence of the coprocessor chip.

Two approaches to interface an 80x87 emulator to programs are common. The

first method makes use of the fact that all coprocessor instruction start

with the same five bit pattern 11011. Thus the first byte of a coprocessor

instruction will be in the range D8-DF hexadecimal. In addition, coprocessor

instructions usually are preceded by a WAIT instruction (opcode 9Bh) which is

one byte long (the reason for doing this has been described in the previous

chapter dealing with the operating details of the 80x87). One common approach

is to replace the WAIT instruction and the first byte of the coprocessor

instruction with one out of eight interrupt instructions; the remaining bytes

of the coprocessor instruction are left unchanged. Interrupts 34 to 3B

hexadecimal are used for this emulation technique. (Note that the sequences

9B D8 ... 9B DF can be easily converted to the interrupt instructions CD 34

... CD 3B by simple addition and subtraction of constants.) The compiler or

assembler initially produces code that contains these appropriate interrupt

calls instead of the coprocessor instructions. If a hardware coprocessor is

detected at run-time, the emulator interrupts point to a short routine that

converts the interrupts calls back to coprocessor instructions (yes, this

is known as "self-modifying code"). If no coprocessor is found the interrupts

point to the emulation package, which examines the byte(s) following the

interrupt instruction to determine which floating-point operation to perform.

This method is used by many compilers, including those from Microsoft and

Borland. It works with every 80x86 CPU from the 8086/8088 on.

The second method to interface an emulator is only available on 286/386/486

machines. If the emulation bit in the machine status word of these processors

is set, the processors will generate an interrupt 7 whenever a coprocessor

instruction is encountered. The vector for this interrupt will have been set

up to point at an emulation package that decodes the instruction and performs

the desired operation. This approach has the advantage that the emulator

doesn't have to be included in the program code, but can be loaded once (as a

TSR or device driver) and then used by every program that requires a

coprocessor. Emulation via interrupt 7 is transparent, which means that

programs containing coprocessor instructions execute just like a coprocessor

was present, only slower. This approach is taken by the public domain EM87

emulator, the shareware program Q387, and the commercial Franke387 emulator,

for example. Even programs that require a coprocessor to run like AutoCAD

are 'fooled' to believe that a coprocessor is present with emulators using

INT 7.

Operating systems such as OS/2 2.0 and Windows 3.1 provide coprocessor

emulations using INT 7 automatically if they do not find a coprocessor to be

installed. The emulator in Windows doesn't seem to be very fast, as people

who have ported their Turbo Pascal programs from the TP 6.0 DOS compiler

(using the emulation built into the TP 6.0 run-time library) to the TPW 1.5

Windows compiler (using MS Windows' emulator) have noticed. Slowdowns of as

much as a factor of five have been reported [79]. Also, some instructions

are not supported by the Windows 3.1 emulator, e.g. the FBSTP instruction.

The size of the emulator used by TP 6.0 is about 9.5 KB, while EM87 occupies

about 15.8 KB as a TSR, and Franke387 uses about 13.4 KB as a device driver.

Note that Franke387 and especially EM87 model a real coprocessor much more

closely than Turbo Pascal's emulator does. In particular, EM87 supports

denormal numbers, precision control, and rounding control. The emulator in TP

6.0 does not implement these features. The version of Franke387 tested (V2.4)

supports denormals in single and double-precision, but not double extended

precision, and it supports precision control, but not rounding control.

The shareware program Q387, introduced in 1992, only runs on 386, 386SX, 486SX

and compatible processors. The program loads completely into extended memory

and uses about 360 KB. To enable INT 7 trapping to a service routine in

extended memory it needs to run with a memory manager (e.g. EMM386, QEMM,

or 386MAX). The huge size of the program stems from the fact that it was

solely optimized for speed, assuming that extended memory is a cheap resource.

Presumably it uses large tables to speed computations. Q387 seems to be

the only emulator that is still being maintained and updated at this time.

Intel's E80287 program is supposed to be an 100% exact emulation of the

80287 coprocessor [44]. Note that the more closely a real coprocessor is

modelled by the emulator, the slower the emulator runs and the larger the

code for the emulator gets.

         Relative execution times of coprocessor vs. software emulators

         for selected coprocessor instructions

                        Intel 387DX    TP 6.0 Emulator   EM87 Emulator

         FADD ST, ST(0)       1              26                104

         FDIV [DWord]         1              22                136

         FXAM                 1              10                 73

         FYL2X                1              33                102

         FPATAN               1              36                110

         F2XM1                1              38                110

         The following table is an excerpt from [44]:

                        Intel 80287  Intel E80287 Emulator

         FADD ST, ST(0)       1              42

         FDIV [DWord]         1             266

         FXAM                 1             139

         FYL2X                1              99

         FPATAN               1             153

         F2XM1                1              41

         The following has been adapted from [43] and merged with my own

         data:

                        Intel 8087  TP 6.0 Emul. (8086)  Intel Emul. (8086)

         FADD ST, ST(0)       1              20                 94

         FDIV [DWord]         1              22                 82

         FPTAN                1              18                144

         F2XM1                1               6                171

         FSQRT                1              44                544

One of the reasons emulators are so slow is that they are often designed to

run with every CPU from the 8086/8088 on upwards. This is the case with the

emulators built into the compiler libraries of the Turbo Pascal 6.0 (also

used by Turbo C/C++) and Microsoft C 6.0 compiler (probably also used in

other Microsoft products) and is also true for the EM87 emulator in the

public domain. By using code that can run on a 8086/8088, these emulators

forego the speed advantage offered by the additional instructions and

architectural enhancements (such as 32-bit registers) of the more advanced

Intel 80x86 processors. A notable exception to this is the Franke387

emulator, a commercial emulator that is also sold as shareware. It uses 386-

specific 32-bit code and only runs on 386/386SX/486SX computers.

Besides being slow, coprocessor emulators have other drawbacks when compared

with real coprocessors. Most of the emulators do not support the additional

instructions that the 387-compatible coprocessors offer over the 80287.

Often, some of the low-level stack-manipulating instructions like FDECSTP are

not emulated. For example, [76] lists the coprocessor instructions not

emulated by Microsoft's emulator (included in the MS-C and MS-FORTRAN

libraries) as follows:

         FCOS         FRSTOR      FSINCOS      FXTRACT

         FDECSTP      FSAVE       FUCOM

         FINCSTP      FSETPM      FUCOMP

         FPREM1       FSIN        FUCOMPP

Additionally, some parts of the coprocessor architecture, like the status

register, are often not or only partially emulated. Some emulators do not

conform to the IEEE-754 standard in their implementation of the basic

arithmetic functions, while the hardware coprocessors do. Also, they

sometimes lack the support for denormals (a special class of floating-point

numbers) although it is required by the standard. Not all the 80x87 emulators

support rounding control and precision control, also features required by

IEEE-754. Most of these omissions are aimed at making the emulator faster and

smaller. Because of the performance gap and these other shortcomings of

coprocessor emulators, a real coprocessor is a must for anybody planning to

do some serious computations. (At today's prices, this shouldn't pose much of

a problem to anybody!)

Nhuan Doduc (ndoduc@framentec.fr) has tested a number of standalone

coprocessor emulators for PCs, among them the two emulators, EM87 and

Franke387 V2.4, already mentioned. He found Franke387 to be the best in terms

of reliability, speed, and accuracy.

=============================

Installing a math coprocessor

=============================

Usually, installing a coprocessor doesn't pose much of a problem, as every

coprocessor comes with installation instructions and a diagnostic disk that

lets you check its correct operation after installation. In addition, the

user manuals of most computers have a section on coprocessor installation.

1)   Make sure to buy the right coprocessor for your system. An 8087 works

     together with 8086, 8088, V20, and V30 CPUs. An 80287, 287XL or

     compatible works with a 80286 CPU. (There are also some old 386

     motherboards that accept a 80287 coprocessor, but they usually also

     provide a socket for the 387; given today's pricing, it makes no sense

     not to get a 387 for these systems.) A 80387, 387DX or compatible

     coprocessor is for 386-based systems, as is the Intel RapidCAD. 387

     coprocessors also work with the Cyrix 486DLC CPU (which, despite its

     name, does not include an FPU). Similarly, the 387SX or compatible

     coprocessor go into systems whose CPU is a 386SX or Cyrix 486SLC.

     The Weitek Abacus 3167 works with a 386 CPU but requires a 121-pin EMC

     socket in the system; this is *not* the same socket used by a 80387 or

     compatible chip, and some computers, such as IBM's PS/2s, don't have

     this socket. The Weitek Abacus 4167 works together with the 486 and

     requires a special 142-pin socket to be present.

2)   Always install a coprocessor that's rated at the same clock speed as the

     CPU. For example, in a 40 MHz 386 system using an AMD Am386-40, install

     a coprocessor rated for 40 MHz such as a Cyrix 83D87-40, C&T 38700DX-40,

     IIT 3C87-40, ULSI 83C87-40, or ULSI DX/DLC-40. Running a coprocessor

     above its specified frequency rating may cause it to produce false

     results, which you might fail to recognize as such. (I have personally

     experienced this problem with a Cyrix 83D87-33 that I tried to push to

     40 MHz. It passed all the diagnostic benchmarks on the Cyrix diagnostic

     disk and the tests of some commercial system test programs. However, I

     found it to fail the Whetstone and Linpack benchmarks, which include

     accuracy checks.) Although there is usually no problem with overheating

     when pushing a coprocessor over the specified maximum frequency rating,

     be warned that operation of a coprocessor above the maximum ratings

     stated by the manufacturer may make its operation unreliable.

     Some 386 boards allow the coprocessor to be clocked differently than the

     CPU. This is called "asynchronous operation" and allows you, for

     example, to run the coprocessor at 33 MHz while the CPU runs at 40 MHz.

     Of the currently available math coprocessors, only the Intel 80387 and

     387DX support asynchronous operation. The 387-compatible "clones" from

     Cyrix, C&T, IIT, and ULSI always run at the full speed of the CPU, even

     if you have set up your motherboard for asynchronous operation.

3)   Once you've got the correct coprocessor for your system you can start

     the actual installation process. Turn off the computer's power switch

     and unplug the power cord from the wall outlet, remove the case, and

     locate the math coprocessor socket. This socket is always located right

     next to the main CPU, which can be identified by the printing on top of

     the chip. (It's also usually one of the biggest chips on the board). The

     8078 and 80287 DIL sockets are rectangular sockets with 20 pin holes on

     each of the longer sides. The 387SX PLCC socket is a square socket that

     has 17 vertical connector strips on the 'wall' of each side. The 387 PGA

     socket is square and has two rows of pin holes on each side. The EMC

     socket for the Weitek 3167 is similar but has three rows of holes on

     each side. The PGA socket for the Weitek 4167 is also square with three

     rows of holes on each side. If you can't find the math coprocessor

     socket, consult your owner's manual, your computer dealer, or a

     knowledgeable friend.

     If you are installing the Intel RapidCAD chipset in a 386 system, you

     will have to remove the 386 CPU first. Intel provides an easy-to-use

     chip extractor and a storage box for the 386 chip for this purpose. Just

     follow the instructions in the RapidCAD installation manual.

     On many systems, the motherboard is supported only at a small number of

     points. Since considerable force is required to insert a pin grid chip

     like the 80387, RapidCAD, or Weitek Abacus 3167 into its socket, the

     board may bend quite a lot due to the insertion pressure. This could

     cause cracks in the board's conductive traces that may render it

     intermittently or completely inoperable. Damage done to the board in

     this way is usually not covered by the computer's warranty! Therefore,

     it may be a good idea to first check how much the board bends by

     pressing on the math coprocessor socket with your finger. If you find it

     to bend easily, try to put something under the board directly beneath

     the coprocessor socket. If this is impossible, as it is in many desktop

     cases, consider removing the whole mother board from the case, and

     placing it on a hard, flat surface free of static electricity. (You will

     also have to do this if your system's CPU and coprocessor socket are on

     a separate card rather than on the motherboard, as is typical in many

     modular systems.)

     Be sure you are properly grounded before you remove the coprocessor from

     its antistatic box, as even a tiny jolt of static electricity can ruin

     the coprocessor. Make sure you do not touch the pins on the bottom of

     the chip.

     Check the pins and make sure none are bent; if some are, you can

     *carefully* straighten them with needle-nose pliers or tweezers.

4)   Match the coprocessor's orientation with the orientation of the socket.

     Correct orientation of the coprocessor is absolutely essential, because

     if you insert it the wrong way it may be damaged.

     8087 and 287 coprocessors have a notch on one the shorter sides of their

     rectangular DIL package that should be matched with the notch of the

     coprocessor socket. Usually the 286 CPU and the 287 coprocessor are

     placed alongside each other and both have the same orientation, (that

     is, their respective notches point in the same direction). 387SX

     coprocessors feature a white dot or similar mark that matches with some

     sort of marking on the socket. 387 coprocessors have a bevelled corner

     that is also marked with a white dot or similar marking. This should be

     matched with the bevelled or otherwise marked corner of the socket. If

     your system has only a large EMC socket and you are installing a 387 in

     it, you will leave one row of pin holes free on each side of the chip.

     Once you have found the correct orientation, place the chip over the

     socket and make sure all pins are correctly aligned with their

     respective holes. Press firmly and evenly on the chip -- you may have to

     press hard to seat the coprocessor all the way. Again, make sure your

     motherboard does not bend more than slightly under the insertion

     pressure. For 8087, 287, and 387 coprocessors it is normal that the

     coprocessor does not go all the way in; about one millimeter (1/25 inch)

     of space is usually left between the socket and the bottom of the

     coprocessor chip. (This allows the insertion of a extraction device

     should it become necessary to remove the chip. Note that the

     construction of the 387SX's PLCC socket makes it next-to-impossible to

     remove the coprocessor once fully inserted, as the top of the chip is

     level with the socket's 'walls'.)

5)   Check your computer's manual for the proper position of any jumpers or

     switches that need to be set to tell the system it now has a coprocessor

     (and possibly, which kind it has). Put the cover back on the system

     unit, reconnect the power, and turn on your computer. Depending on your

     system's BIOS, you may now have to run a setup or configuration program

     to enable the coprocessor. Finally, run the programs supplied on the

     diagnostic disk (included with your coprocessor) to check for its

     correct operation.

=================================================================

Descriptions of available coprocessors, CPU+FPU (as of 01-11-93):

=================================================================

Intel 8087

     [43] This was the first coprocessor that Intel made available for the

     80x86 family. It was introduced in 1980 and therefore does not have full

     compatibility with the IEEE-754 standard for floating-point arithmetic,

     (which was finally released in 1985). It complements the 8088 and 8086

     CPUs and can also be interfaced to the 80188 and 80186 processors.

     The 8087 is implemented using NMOS. It comes in a 40-pin CERDIP (ceramic

     dual inline package). It is available in 5 MHz, 8 MHz (8087-2), and 10

     MHz (8087-1) versions. Power consumption is rated at max. 2400 mW [42].

     A neat trick to enhance the processing power of the 8087 for

     computations that use only the basic arithmetic operations (+,-,*,/) and

     do not require high precision is to set the precision control to single-

     precision. This gives one a performance increase of up to 20%. For

     details about programming the precision control, see program PCtrl in

     appendix A.

     With the help of an additional chip, the 8087 can in theory be

     interfaced to an 80186 CPU [36]. The 80186 was used in some PCs (e.g.

     from Philips, Siemens) in the 1982/1983 time frame, but with IBM's

     introduction of the 80286-based AT in 1984, it soon lost all

     significance for the PC market.

Intel 80187

     The 80187 is a rather new coprocessor designed to support the 80C186

     embedded controller (a CMOS version of the 80186 CPU; see above). It was

     introduced in 1989 and implements the complete 80387 instruction set. It

     is available in a 40 pin CERDIP (ceramic dual inline package) and a 44

     pin PLCC (plastic leaded chip carrier) for 12.5 and 16 MHz operation.

     Power consumption is rated at max. 675 mW for the 12.5 MHz version and

     max. 780 mW for the 16 MHz version [37].

Intel 80287

     [44] This is the original Intel coprocessor for the 80286, introduced in

     1983. It uses the same internal execution unit as the 8087 and therefore

     has the same speed (actually, it is sometimes slower due to additional

     overhead in CPU-coprocessor communication). As with the 8087, it does

     not provide full compatibility with the IEEE-754 floating point standard

     released in 1985.

     The 80287 was manufactured in NMOS technology, and is packaged in a 40-

     pin CERDIP (ceramic dual inline package). There are 6 MHz, 8 MHz, and 10

     MHz versions. Power consumption can be estimated to be the same as that

     for the 8087, which is 2400 mW max.

     The 80287 has been replaced in the Intel 80x87 family with its faster

     successor, the CMOS-based Intel 287XL, which was introduced in 1990 (see

     below). There may still be a few of the old 80287 chips on the market,

     however.

Intel 80287XL

     This chip is Intel's second-generation 287, first introduced in 1990.

     Since it is based on the 80387 coprocessor core, it features full IEEE

     754 compatibility and faster instruction execution. Intel claims about

     50% faster operation than the 80287 for typical benchmark tests such as

     Whetstone [45]. Comparison with benchmark results for the AMD 80C287,

     which is identical to the Intel 80287, support this claim [1]: The Intel

     287XL performed 66% faster than the AMD 80C287 on a fractal benchmark

     and 66% faster on the Whetstone benchmark in these tests. Whetstone

     results from [46] show the Intel 287XL at 12.5 MHz to perform 552

     kWhets/sec as opposed to the AMD's 80C287 289 kWhets/sec, a 91%

     performance increase. A benchmark using the MathPak program showed the

     Intel 287XL to be 59% faster than the Intel 80287 (6.9 sec. vs. 11.0

     sec.) [26]. Since the 287XL has all the additional instructions and

     enhancements of a 387, most software automatically identifies it as an

     80387-compatible coprocessor and therefore can make use of extra 387-

     only features, such as the FSIN and FCOS instructions.

     The 287XL is manufactured in CMOS and therefore uses much less power

     than the older NMOS-based 80287. At 12.5 MHz, the power consumption is

     rated at max. 675 mW, about 1/4 of the 80287 power consumption. The

     287XL is available in either a 40-pin CERDIP (ceramic dual inline

     package) or a 44 pin PLCC (plastic leaded chip carrier). (This latter

     version is called the 287XLT and intended mainly for laptop use.) The

     287XL is rated for speeds of up to 12.5 MHz.

AMD 80C287

     This chip, manufactured by Advanced Micro Devices (AMD), is an exact

     clone of the old Intel 80287, and was first brought to market by AMD in

     1989. It contains the original microcode of the 80287 and is therefore

     100% compatible with it. However, as the name indicates, the 80C287 is

     manufactured in CMOS and therefore uses less power than an equivalent

     Intel 80287. At 12.5 MHz, its power consumption is rated at max. 625 mW

     or slightly less than that of the Intel 80287XL [27]. There is also

     another version called AMD 80EC287 that uses an 'intelligent' power save

     feature to reduce the power consumption below 80C287 levels. Tests at

     10.7 MHz show typical power consumption for the 80EC287 to be at 30 mW,

     compared to 150 mW for the AMD 80C287, 300 mW for the Intel 287XL and

     1500 mW for the Intel 80287 [57]. The 80EC287 is therefore ideally

     suited for low power laptop systems.

     The AMD 80C287 is available in speeds of 10, 12, and 16 MHz. (I have

     only seen it being offered in 10 MHz and 12 MHz versions, however.) At

     about US$ 50, it is currently the cheapest coprocessor available. Note

     that it provides less performance than the newer Intel 287XL (see

     above). The AMD 80C287 is available in 40 pin ceramic and plastic DIPs

     (dual inline package) and as 44 pin PLCC (plastic leaded chip carrier).

     Due to recent legal battles with Intel over the right to use the 287

     microcode, which AMD lost, AMD had to discontinue this product and it

     is no longer available.

Cyrix 82S87

     This 80287-compatible chip was developed from the Cyrix 83D87, (Cyrix's

     80387 'clone') and has been available since 1991. It complies completely

     with the IEEE-754 standard for floating-point arithmetic and features

     nearly total compatibility with Intel's coprocessors, including

     implementation of the full Intel 80387 instruction set. It implements

     the transcendental functions with the same degree of accuracy and the

     superior speed of the Cyrix 83D87. This makes the Cyrix 82S87 the

     fastest [1] and most accurate 287 compatible coprocessor available.

     Documentation by Cyrix [46] rates the 82S87 at 730 kWhets/sec for a 12.5

     MHz system, while the Intel 287XL performs only 552 kWhets/sec. 82S87

     chips manufactured after 1991 use the internals of the Cyrix 387+, which

     succeeds the original 83D87 [73].

     The 82S87 is a fully static CMOS design with very low power requirements

     that can run at speeds of 6 to 20 MHz. Cyrix documentation shows the

     82S87 to consume about the same amount of power as the AMD 80C287 (see

     above). The 82S87 comes in a 40 pin DIP or a 44 pin PLCC (plastic leaded

     chip carrier) compatible with the pinout of the Intel 287XLT and

     ideally suited for laptop use.

IIT 2C87

     This chip was the first 80287 clone available, introduced to the market

     in 1989. It has about the same speed as the Intel 287XL [1]. The 2C87

     implements the full 80387 instruction set [38]. Tests I ran on the 3C87

     seem to indicate that it is not fully compatible with the IEEE-754

     standard for floating-point arithmetic (see below for details), so it

     can be assumed that the 2C87 also fails these test (as it presumably

     uses the same core as the 3C87).

     The IIT 2C87 provides extra functions not available on any other 287

     chip [38]. It has 24 user-accessible floating-point registers organized

     into three register banks. Additional instructions (FSBP0, FSBP1, FSBP2)

     allow switching from one bank to another. (Transfers between registers

     in different banks are not supported, however, so this feature by itself

     is of limited usefulness. Also, there seems to be only one status

     register (containing the stack top pointer), so it has to be manually

     loaded and stored when switching between banks with a different number

     of registers in use [40]). The register bank's main purpose is to aid

     the fourth additional instruction the 2C87 has (F4X4), which does a full

     multiply of a 4x4 matrix by a 4x1 vector, an operation common in 3D-

     graphics applications [39]. The built-in matrix multiply speeds this

     operation up by a factor of 6 to 8 when compared to a programmed

     solution according to the manufacturer [38]. Tests show the speed-up to

     be indeed in this range [40]. For the 3C87, I measured the execution

     time of F4X4 to be about 280 clock cycles; the execution time on the

     2C87 should be somewhat larger - I estimate it to be around 310 clock

     cycles due to the higher CPU-NDP communication overhead in instruction

     execution in 286/287 systems (~45-50 clock cycles) compared with 386/387

     systems (~16-20 clock cycles). As desirable as the F4X4 instruction may

     seem, however, there are very few applications that make use of it when

     an IIT coprocessor is detected at run time (among them Schroff

     Development's Silver Screen and Evolution Computing's Fast-CAD 3-D

     [25]).

     The 2C87 is available for speeds of up to 20 MHz. It is implemented in

     an advanced CMOS process and has therefore a low power consumption of

     typically about 500 mW [38].

Intel 80387

     This chip was the first generation of coprocessors designed specifically

     for the Intel 80386 CPU. It was introduced in 1986, about one year after

     the 80386 was brought to market. Early 386 system were therefore

     equipped with both a 80287 and a 80387 socket. The 80386 does work with

     an 80287, but the numerical performance is hardly adequate for such a

     system.

     The 80387 has itself since been superseded by the Intel 387DX introduced

     by a quiet change in 1989 (see below). You might find it when acquiring

     an older 386 machine, though. The old 80387 is about 20% slower than the

     newer 387DX.

     The 80387 is packaged in a 68-pin ceramic PGA, and was manufactured

     using Intel's older 1.5 micron CHMOS III technology, giving it moderate

     power requirements. Power consumption at 16 MHz is max. 1250 mW (750 mW

     typical), at 20 MHz max. 1550 mW (950 mW typical), and at 25 MHz max.

     1950 mW (1250 mW typical) [60].

Intel 387DX

     The 387DX is the second-generation Intel 387; it was quietly introduced

     to replace the original 80387 in 1989. This version is done in a more

     advanced CMOS process which enables the coprocessor to run at a maximum

     frequency of 33 MHz (the 80387 was limited to a maximum frequency of 25

     MHz). The 387DX is also about 20% faster than the 80387 on the average

     for the same clock frequency. For a 386/387 system operating at 29 MHz

     the Whetstone benchmark (compiled with the highly optimizing Metaware

     High-C V1.6) runs at 2377 kWhetstones/sec for the 80387 and at 2693

     kWhetstones/sec for the 387DX, a 13% increase. In a fractal calculation

     programmed in assembly language, the 387DX performance was 28% higher

     than the performance of the 80387. The transcendental functions have

     also sped up from the 80387 to the 387DX. In the Savage benchmark

     (again, compiled with Metaware High-C V1.6 and running on a 29 MHz

     system), the 80387 evaluated 77600 function calls/second, while the

     387DX evaluated 97800 function calls/second, a 26% increase [7]. Some

     instructions have been sped up a lot more than the average 20%. For

     example, the performance of the FBSTP instruction has increased by a

     factor of 3.64.

     The Intel 387DX (and its predecessor 80387) are the only 387

     coprocessors that support asynchronous operation of CPU and coprocessor.

     The 387 consists of a bus interface unit and a numerical execution unit.

     The bus interface unit always runs at the speed of the CPU clock

     (CPUCLK2). If the CKM (ClocK Mode) pin of the 387 is strapped to Vcc,

     the numerical execution unit runs at the same speed as the bus interface

     unit. If CKM is tied to ground, the numerical execution unit runs at the

     speed provided by the NUMCLK2 input. The ratio of NUMCLK2 (coprocessor

     clock) to CPUCLK2 (CPU clock) must lie within the range 10:16 to 14:10.

     For example, for a 20 MHz 386, the Intel 387DX could be clocked from

     12.5 MHz to 28 MHz via the NUMCLK2 input. (On the Cyrix 83D87, Cyrix

     387+, ULSI 83C87, ULSI DX/DLC, and the IIT 387, the CKM pin is not

     connected. These coprocessors are therefore not capable of asynchronous

     operation and always run at the speed of the CPU.)

     The Intel 387DX is manufactured using Intel's advanced low power CHMOS

     IV technology. Power consumption at 20 MHz is max. 900 mW (525 mW

     typical), at 25 MHz max. 1050 mW (625 mW typical), and at 33 MHz max.

     1250 mW (750 mW typical) [59].

Intel 387SX

     This is the coprocessor paired with the Intel 386SX CPU. The 386SX is an

     Intel 80386 with a 16-bit, rather than 32-bit, data path. This reduces

     (somewhat) the costs to build a 386SX system as compared to a full 32-

     bit design required by a 386DX. (The 386SX's main *marketing* purpose

     was to replace the 80286 CPU, which was being sold more cheaply by other

     manufacturers [such as AMD], and which Intel subsequently stopped

     producing.) Due to the 16-bit data path, the 386SX is slower than the

     386DX and offers about the same speed as an 80286 at the same clock

     frequency for 16-bit applications. But as the 386SX is a complete 80386

     internally, it offers also the possibility to run 32-bit applications

     and supports the virtual 8086 mode (used for example by Windows' 386

     enhanced mode).

     The 387SX has all the features of the Intel 80387, including the ability

     of asynchronous operation of CPU and coprocessor (see Intel 387DX

     information, above). Due to the 16 bit data path between the CPU and the

     coprocessor, the 387SX is a bit slower than a 80387 operating at the

     same frequency. In addition, the 387SX is based on the core of the

     original 80387, which executes instructions slower than the second

     generation 387DX.

     The 387SX comes in a 68-pin PLCC (plastic leaded chip carrier) package

     and is available in 16 MHz and 20 MHz versions. (Coprocessors for faster

     386SX systems based on the Am386SX CPU are available from IIT, Cyrix,

     and ULSI.) Power consumption for the 387SX at 16 MHz is max. 1250 mW

     (740 mW typical); for the 20 MHz version it is max. 1500 mW (1000 mW

     typical) [62].

Intel 387SL

     This coprocessor is designed for use in systems that contain an Intel

     386SL as the CPU. The 386SL is directly derived from the 386SX. It is a

     static CHMOS IV design with very low power requirements that is intended

     to be used in notebook and laptop computers. It features an integrated

     cache controller, a programmable memory controller, and hardware support

     for expanded memory according to the LIM EMS 4.0 standard. The 387SL,

     introduced in early 1992, has been designed to accompany the 386SL in

     machines with low power consumption and substitute the 387SX for this

     purpose. It features advanced power saving mechanisms. It is based on

     the 387DX core, rather than on the older and slower 80387 core (which is

     used by the 387SX).

IIT 3C87

     This IIT chip was introduced in 1989, about the same time as the Cyrix

     83D87. Both coprocessors are faster than Intel's 387DX coprocessor. The

     IIT 3C87 also provides extra functions not available on any other 387

     chip [38]. It has 24 user-accessible floating-point registers organized

     into three register banks. Three additional instructions (FSBP0, FSBP1,

     FSBP2) allow switching from one bank to another. (Transfers between

     registers in different banks are not supported, however, so this feature

     by itself is of limited usefulness. Also, there seems to be only one

     status register [containing the stack top pointer], so it has to be

     manually loaded and stored when switching between banks with a different

     number of registers in use [40]). The register bank's main purpose is to

     aid the fourth additional instruction the 3C87 has (F4X4), which does a

     full multiply of a 4x4 matrix by a 4x1 vector, an operation common in

     3D-graphics applications [39]. The built-in matrix multiply speeds this

     operation up by a factor of 6 to 8 when compared to a programmed

     solution according to the manufacturer [38]. Tests show the speed-up to

     be indeed in this range [40]. I measured the F4X4 to execute in about

     280 clock cycles, during which time it executes 16 multiplications and

     12 additions. The built-in matrix multiply speeds up the matrix-by-

     vector multiply by a factor of 3 compared with a programmed solution

     according to IIT [39]. The results for my own TRNSFORM benchmark support

     this claim (see results below), showing a performance increase by a

     factor of about 2.5. This makes matrix multiplies on the IIT 3C87 nearly

     as fast as on an Intel 486 at the same clock frequency. As desirable as

     the F4X4 instruction may seem, however, there are very few applications

     that make use of it when an IIT coprocessor is detected at run time

     (among them Schroff Development's Silver Screen and Evolution

     Computing's Fast-CAD 3-D [25]).

     These IIT-specific instructions also work correctly when using a Chips &

     Technologies 38600DX or a Cyrix 486DLC CPU, which are both marketed as

     faster replacements for the Intel 386DX CPU.

     Tests I ran with the IEEETEST program show that the 3C87 is not fully

     compatible with the IEEE-754 standard for floating-point arithmetic,

     although the manufacturer claims otherwise. It is indeed possible that

     the reported errors are due to personal interpretations of the standard

     by the program's author that have been incorporated into IEEETEST and

     that the standard also supports the different interpretation chosen by

     IIT. On the other hand, the IEEE test vectors incorporated into IEEETEST

     have become somewhat of an industry standard [66] and Intel's 387, 486,

     and RapidCAD chips pass the test without a single failure, so the fact

     that the IIT 3C87 fails some of the tests indicates that it is not fully

     compatible with the Intel 387 coprocessor. My tests also show that the

     IIT 3C87 does not support denormals for the double extended format. It

     is not entirely clear whether the IEEE standard mandates support for

     extended precision denormals, as the IEEE-754 document explicitly only

     mentions single and double-precision denormals. Missing support for

     denormals is not a critical issue for most applications, but there are

     some programs for which support of denormals is at the very least quite

     helpful [41]. In any case, failure of the 3C87 to support extended

     precision denormal numbers does represent an incompatibility with the

     Intel 387 and 486 chips.

     The 3C87 is implemented in an advanced CMOS process and has low power

     requirements, typically about 600 mW. Like the 387 'clones' from Cyrix

     and ULSI, the 3C87 does not support asynchronous operation of the CPU

     and the coprocessor, but always runs at the full speed of the CPU. It is

     available in 16, 20, 25, 33, and 40 MHz versions.

IIT 3C87SX

     This is the version of the IIT 3C87 that is intended for use with

     Intel's 386SX or AMD's Am386SX CPU, and is functionally equivalent to

     the IIT3C87. Due to the 16-bit data path between the CPU and the

     coprocessor in a 386SX-based system, coprocessor instructions will

     execute somewhat more slowly than on the 3C87. At present, the IIT

     3C87SX is offered at speeds of 16, 20, 25, and 33 MHz. The IIT 3C87SX

     and the Cyrix 83S87 are the only 387SX-type math coprocessors that

     come in a 33 MHz version. The 3C87SX is packaged in a 68-pin PLCC.

IIT 487DLC

     Reports in Internet NEWS seems to indicate that this chip can be

     used interchangeably with the IIT 3C87.

Cyrix FasMath 83D87

     This chip was introduced in 1989, only shortly after the coprocessors

     from IIT. It has been found to be the fastest 387-compatible coprocessor

     in several benchmark comparisons [1,7,68,69]. It also came out as the

     fastest coprocessor in my own tests (see benchmark results below).

     Although the Cyrix 83D87 provides up to 50% more performance than the

     Intel 387DX in benchmarks comparisons, the speed advantage over other

     387-compatible coprocessors in real applications is usually much

     smaller, because coprocessor instructions represent only a small part of

     the total application code. For example, in a test using the program 3D-

     Studio, the Cyrix 83D87 was 6% faster than the Intel 387DX [1].

     Besides being the fastest 387 coprocessor, the 83D87 also offers the

     most accurate transcendental functions results of all coprocessors

     tested (see test results below). The new "387+" version of the 83D87,

     available since November 1991, even surpasses the level of accuracy of

     the original 83D87 design. Note that the name 387+ is used in European

     distribution only. In other parts of the world, the new chip still goes

     by the name 83D87.

     Unlike Intel's coprocessors, which use the CORDIC [18,19] algorithm to

     compute the transcendental functions, Cyrix uses polynomial and rational

     approximations to the functions. In the past the CORDIC method has been

     popular since it requires only shifts and adds, which made it relatively

     easy to implement a reasonably fast algorithm. Recently, the cost for the

     implementation of fast floating-point hardware multipliers has dropped

     significantly (due to the availability of VLSI), making the use of

     polynomial and rational approximations superior to CORDIC for the

     generation of transcendental functions [61]. The Cyrix 83D87 uses a fast

     array multiplier, making its transcendental functions faster than those

     of any other 387 compatible coprocessor. It also uses 75 bit for the

     mantissa in intermediate calculations (as opposed to 68 bits on other

     coprocessors), making its transcendental functions more accurate than

     those of any other coprocessor or FPU (see results below).

     The 83D87 (and its successor, the 387+) are the 387 'clones' with the

     highest degree of compatibility to the Intel 387DX. A few minor software

     and hardware incompatibilities have been documented by Cyrix [12]. The

     software differences are caused by some bugs present in the 387DX that

     Cyrix fixed in the 83D87. Unlike the Intel 387DX, the 83D87 (and all

     other 387-compatible chips as well) does not support asynchronous

     operation of CPU and coprocessor. There were also problems in the past

     with the CPU-coprocessor communications, causing the 83D87 to

     occasionally hang on some machines. The reason behind this was that

     Cyrix shaved off a wait state in the communication protocol, which

     caused a communications breakdown between the CPU and the 83D87 for some

     systems running at 25 MHz or faster. (One notable example of this

     behavior was the Intel 302 board.) Also there were problems with boards

     based on early revisions of the OPTI chipset. These problem are only

     rarely encountered with the current generation of 386 motherboards, and

     it is possible that it has been entirely eliminated in the 387+, the

     successor to the 83D87.

     To reduce power consumption the 83D87 features advanced power saving

     features. Those portions of the coprocessor that are not needed are

     automatically shut down. If no coprocessor instructions are being

     executed, *all* parts except the bus interface unit are shut down [12].

     Maximal power consumption of the Cyrix 83D87 at 33 MHz is 1900 mW, while

     typical power consumption at this clock frequency is 500 mW [15].

Cyrix EMC87

     This coprocessor is basically a special version of the Cyrix 83D87,

     introduced in 1990. In addition to the normal 387 operating mode, in

     which coprocessor-CPU communication is handled through reserved IO

     ports, it also offers a memory-mapped mode of operation similar to the

     operation principle of the Weitek Abacus. Like the Weitek chip, the

     EMC87 occupies a block of memory starting at physical address C0000000h

     (the Abacus occupies a memory block of 64 KB, while the EMC87 uses only

     4 KB [77]). It can therefore only be accessed in the protected or

     virtual modes of the 386 CPU. DOS programs can access the EMC87 with the

     help of DOS extenders or memory managers like EMM386 which run in

     protected/virtual mode themselves. To implement the memory-mapped

     interface, the usual 80x87 architecture has been slightly expanded with

     three additional registers and eleven additional instructions that can

     only be used if the memory-mapped mode is enabled.

     Using this special mode of the EMC87 provides a significant speed

     advantage. The traditional 387 CPU-coprocessor interface via IO ports

     has an overhead of about 14-20 clock cycles. Since the Cyrix 83D87

     executes some operations like addition and multiplication in much less

     time, its performance is actually limited by the CPU-coprocessor

     interface. Since the memory-mapped mode has much less overhead, it

     allows all coprocessor instructions to be executed at full speed with no

     penalty.

     Originally, Cyrix claimed support for the fast memory-mapped mode of the

     EMC87 from a number of software vendors (including Borland and

     Microsoft). However, there are only very few applications that make use

     of it, among them Evolution Computing's FastCAD 3D, MicroWay Inc.'s NDP

     FORTRAN-386 compiler, Metaware's High-C compiler version 1.6 and newer,

     and Intusofts's Spice [63,73]. Part of the problem in supporting the

     memory-mapped mode is that the application must reserve one of the

     general purpose registers of the CPU to use memory-mapped mode

     instructions that access memory.

     (Note that the EMC87 is *not* compatible with Weitek's Abacus

     coprocessor. They both use the same CPU interface technique [memory

     mapping], but while the EMC87 uses the standard 387 instruction set, the

     Weitek Abacus coprocessors use a different instruction set entirely its

     own.)

     Since the EMC87 provides also the standard 386/387 CPU interface via IO

     ports, it can be used just like any other 387-compatible coprocessor and

     delivers the same performance as the Cyrix 83D87 in this mode. The EMC87

     even allows mixed use of memory-mapped and traditional instructions in

     the same code. Cyrix has also implemented some additional instructions

     in the EMC87 that are also available in the 387-compatible mode:

     FRICHOP, FRINT2, and FRINEAR. These instructions enable rounding to

     integer without setting the rounding mode by manipulating the

     coprocessor control word, and are intended to make life easier for

     compiler writers.

     In a test, the EMC87 at 33 MHz ran the single-precision Whetstone

     benchmark at 7608 kWhetstones/sec, while the Cyrix 83D87 at 33 MHz had a

     speed of only 5049 kWhetstones/sec, an increase of 50.6% [63]. In

     another test, the EMC87 ran a fractal computation at twice the speed of

     the Cyrix 83D87 and 2.6 times as fast as an Intel 387DX [64]. A third

     test found the EMC87's overall performance to be 20% higher than the

     performance of the Cyrix 83D87 [65].

     The Cyrix FasMath EMC87 has also been marketed as Cyrix AutoMATH; the

     two chips are identical. Unlike the Cyrix 83D87, which fits into the 68-

     pin 387 coprocessor socket, the EMC87 comes in a 121-pin PGA and

     requires the 121-pin EMC (Extended Math Coprocessor) socket. Note that

     not all boards have such a socket (a notable exception being IBM's

     PS/2s, for example). The EMC87 is available 25 and 33 MHz versions.

     Maximum power consumption at 33 MHz is 2000 mW.

     Cyrix phased out the EMC87 in 1992 and it is no longer available from

     chip dealers.

Cyrix FasMath 387+

     This chip is the second-generation successor to the Cyrix 83D87. (The

     name "387+" is only used for European distribution; in other parts of

     the world, it goes by the original 83D87 designation.) According to a

     source within Cyrix [73], the 387+ was designed to make a smaller (and

     thus cheaper to manufacture) coprocessor chip that could also be pushed

     to higher frequencies than the original chip: the 387+ is available in

     versions of up to 40 MHz, whereas the original 83D87 could go no faster

     than 33 MHz.

     The Cyrix 387+ is ideally suited to be used with Cyrix's 486DLC CPU,

     which is a 486SX compatible replacement chips for the Intel 386DX.

     Indeed Cyrix sells upgrade kits consisting of a 486DLC CPU and a

     Cyrix 387+.

     In my tests, I found the Cyrix 387+ to be about five to 10 percent

     *slower* than the Cyrix 83D87. However, some instructions like the

     square root (FSQRT) now run at only half the speed at which they ran in

     the 83D87, and most transcendental functions show about a 40% drop in

     performance compared to their 83D87 averages (see performance results,

     below). However, I did find the transcendental functions on the 387+ to

     be a bit *more* accurate than those implemented in the 83D87. The new

     design uses a slower hardware multiplier that needs six clock cycles to

     multiply the floating-point mantissa of an internal precision number,

     while the multiplier in the 83D87 takes only 4 clocks to accomplish the

     same task. Since the transcendental functions in Cyrix math coprocessors

     are generated by polynomial and rational approximations, this slows them

     down significantly.

     The divide/square root logic has also been changed from the 83D87

     design. The original design used an algorithm that could generate both

     the quotient and square root, so the execution times for these

     instructions were nearly identical. The algorithm chosen for the

     division in the 387+ doesn't allow the square root to be taken so

     easily, so it takes nearly twice as long.

     In the 387+, the available argument range for the FYL2XP1 instruction

     has been extended, from the usual range -1+sqrt(2)/2..sqrt(2)/2 that is

     found on all 80x87 coprocessors, to include all floating-point numbers.

     Also, four additional instructions have been implemented: FRICHOP

     (opcode DD FC), FRINT2 (opcode DB FC), FRINEAR (opcode DF FC), and FTSTP

     (opcode D9 E6).

Cyrix FasMath 83S87

     The 83S87 is the SX version of the Cyrix 83D87. Just as the 83D87 is the

     fastest 387-compatible coprocessor, the Cyrix 83S87 is the fastest of

     the 387SX compatible coprocessors [1], as well as providing the most

     accurate transcendental functions. 83S87 chips manufactured after 1991

     use the internals of the Cyrix 387+, the successor to the original 83D87

     [73] (above). The Cyrix 83S87 is ideally suited to be used with the

     Cyrix Cx486SLC CPU, a 486SX compatible CPU which is a replacement chip

     for the Intel 386SX CPU.

     The 83S87 is packaged in a 68-pin PLCC and is available in 16, 20, 25,

     and 33 MHz versions. Due to the advanced power saving features of the

     Cyrix coprocessor, the typical power consumption of the 20 MHz version

     is only about 350 mW [67], while maximum power dissipation is 1.6 W [80].

ULSI Math*Co 83C87

     The ULSI 83C87 is an 80387-compatible coprocessor first introduced in

     early 1991, well after the IIT 3C87 and Cyrix 83D87 appeared. Like other

     387 clones, it is somewhat faster than the Intel 387DX, particularly in

     its basic arithmetic functions. The transcendental functions, however,

     show only a slight speed improvement over the Intel 387DX (see benchmark

     results below).

     In my tests, the ULSI had the most inaccurate transcendental functions

     of all tested coprocessors. However, the maximum relative error is still

     within the limits set by Intel, so this is probably not an important

     issue for all but a very few applications. The ULSI 83C87 shows some

     minor flaws in the tests for IEEE 754 compatibility, but this, too, is

     probably unimportant under typical operating conditions. ULSI claims

     that the program IEEETEST, which was used to test for IEEE

     compatibility, contains many personal interpretations of the IEEE

     standard by the program's author and states that there is no ANSI-

     certified IEEE-754 compliance test. While this may be true, it is

     also a fact that the IEEE test vectors used in IEEETEST are a de facto

     industry standard, and that Intel's 387, 486, and RapidCAD chips pass it

     without a single failure, as do the coprocessors from Cyrix. Since the

     ULSI Math*Co 83C87 fails some of the tests, it is certainly less than

     100% compatible with Intel's chips, although this will likely make

     little or no difference in typical operating conditions. (It is

     interesting to note that an ULSI 83S87 manufactured in 92/17 showed

     fewer errors in the IEEETEST test run [74] than the ULSI 83C87,

     manufactured in 91/48, I used in my original test. This indicates that

     ULSI might have applied some quick fixes to newer revisions of their

     math coprocessors.)

     The ULSI 83C87 fails to be compatible with the IEEE-754 in that is does

     not implement the "precision control" feature. While all the internal

     operations of 80x87 coprocessors are usually performed with the maximum

     precision available (double-extended precision with 64 mantissa bits),

     the 80x87 architecture also offer the possibility to force lower

     precision to be used for the basic arithmetic functions (add, subtract,

     multiply, divide, and square root). This feature is required by IEEE-754

     for all coprocessors that can not store results *directly* to a single

     or double-precision location. Since 80x87 coprocessors lack this storage

     capability, they all implement precision control to provide correctly

     rounded single- and double-precision results according to the floating-

     point standard - except the ULSI chips. For programs that make use of

     precision control (e.g., Interactive UNIX), correct implementation of

     the feature may be essential for correct arithmetic results.

     It seems to be confirmed by the numerous postings on Internet that

     using an ULSI math coprocessor with protected mode operating systems

     will result in system lockup once tasks using the math coprocessor are

     run. This seems to be the result of a bug in the FSAVE and FRSTOR

     instructions in 32-bit protected mode. These instructions are used to

     save and restore the math coprocessor state for the purpose of switching

     coprocessor contents between two tasks. OS/2 and Linux are two operating

     systems that have been explicitly mentioned as having locked up if a

     ULSI math coprocessor is used, but run fine with other math coprocessors.

     ULSI is supposedly aware of the problem. So far, no fixes seem to have

     been introduced in newer ULSI math coprocessors to remedy the problem.

     Therefore it seems unlikely that ULSI will eventually introduce such

     bug fixes.

     Like other non-Intel 387 compatibles, the 83C87 does not support

     asynchronous operation of the CPU and the coprocessor. This means that

     the 83C87 always runs at the full speed of the CPU. It is available in

     20, 25, 33, and 40 MHz versions. The ULSI is produced in low power CMOS;

     power consumption at 20 MHz is max. 800 mW (400 mW typical), at 25 MHz

     it is max. 1000 mW (500 mW typical), at 33 MHz it is max. 1250 mW (625

     mW), and at 40 MHz it is max. 1500 mW (750 mW typical) [58]. The 83C87

     is packaged in a 68-pin ceramic PGA.

     ULSI coprocessors come with a lifetime warranty. ULSI Systems, Inc.,

     will replace the coprocessor up to three times free of charge should it

     ever fail to function properly.

ULSI Math*Co 83S87

     This chip is the SX version of the ULSI 83C87, for use in systems with

     an Intel 387SX or an AMD Am387SX CPU. It is functionally equivalent to

     the 83C87. To aid low-power laptop designs, the ULSI 83S87 features an

     advanced power saving design with a sleep mode and a standby mode with

     only minimal power requirements. Power consumption under normal

     operating conditions (dynamic mode) is max. 400 mW at 16 MHz (300 mW

     typical), max. 450 mW at 20 MHz (350 mW typical), and max. 500 mW at 25

     MHz (400 mW typical) [58]. The ULSI 83S87 is packaged in a 68-pin PLCC.

ULSI DX/DLC

     This math coprocessor seems to be a slightly enhanced version of the

     original ULSI 83C87. Some incompatibilities with respect to the IEEE

     754 standard for floating-point arithmetic have been removed, but the

     the chip still doesn't pass IEEETEST without mismatches. Some of the

     transcendental functions have been sped up somewhat. Other than that,

     I couldn't find any significant changes.

C&T SuperMATH 38700DX

     Produced by Chips&Technologies, this was the latest entry into the 387-

     compatible marketplace. Originally announced in October, 1991, it had

     apparently not been available to end-users before the third quarter of

     1992. The product was discontinued after only a few month since C&T

     stopped all work on their CPU and coprocessor development. My tests

     show that its compatibility with Intel products is very good, even

     for the more arcane features of the 387DX and comparable to the

     coprocessors from Cyrix. Like these chips, it passes the IEEETEST

     program without a single failure. It passes, of course, all tests in

     Chips&Technologies' own compatibility test program, SMDIAG. However,

     some of the tests (the transcendental functions) in this program are

     selected in such a way that the C&T 38700 passes while the Cyrix 83D87

     or Intel RapidCAD fail, so they are not very useful. (There is also a

     'bug' in the test for FSCALE that hides a true bug in the C&T 38700.)

     My tests show the accuracy of the transcendental functions on the C&T

     38700DX varies. Overall, accuracy of the transcendentals is slightly

     better than on the Intel 387DX.

     In my own speed tests [see below] and those reported in [1], the C&T

     38700DX showed performance at about 90-100% the level of the Cyrix

     83D87, which is the 387 clone with the highest performance. For

     floating-point-intensive benchmarks, the C&T 38700DX provides up to 50%

     more computational performance than the Intel 387DX. However, as with

     all other 387 compatible coprocessors, the speed advantage over the

     Intel 387DX is far less significant in real applications.

     The SuperMATH 38700DX is implemented in 1.2 micron CMOS with on-chip

     power management, which makes for low power consumption. The 38700DX is

     packaged in a 68-pin ceramic PGA (pin grid array and available in speeds

     of 16, 20, 25, 33, and 40 MHz.

C&T 38700SX

     This chip is the SX version of the 38700DX and compatible with the Intel

     387SX. It provides performance comparable to a Cyrix 83S87 [1], the

     387SX clone with the highest performance. Compatibility with the Intel

     387SX is very good and on par with the high degree of the compatibility

     found in the Cyrix 83S87.

     The 38700SX has low power consumption. It is packaged in a 68-pin PLCC

     (plastic leaded chip carrier) and available in speeds of 16, 20, and 25

     MHz.

     This chip is no longer available, since C&T stopped all work on their

     386/387 compatible chips in early 1993.

Intel RapidCAD

     The RapidCAD is not a coprocessor, strictly seen, although it is

     marketed as one. Rather, it is a full replacement for a 80386 CPU:

     basically, an Intel 486DX CPU chip without the internal cache and with a

     standard 386 pinout. RapidCAD is delivered as a set of two chips.

     RapidCAD-1 goes into the 386 socket and contains the CPU and FPU.

     RapidCAD-2 goes into the coprocessor (387) socket and contains a simple

     PAL whose only purpose is to generate the FERR signal normally generated

     by a coprocessor (This is needed by the motherboard circuitry to provide

     287 compatible coprocessor exception handling in 386/387 systems.) The

     RapidCAD instruction set is compatible with the 386, so it doesn't have

     any newer, 486-specific instructions like BSWAP. However, since the

     RapidCAD CPU core is very similar to 80486 CPU core, most of the

     register-to-register instructions execute in the same number of clock

     cycles as on the 486.

     RapidCAD's use of the standard 386 bus interface causes instructions

     that access memory to execute at about the same speed as on the 386. The

     integer performance on the RapidCAD is definitely limited by the low

     memory bandwidth provided by this interface (2 clock cycles per bus

     cycle) and the lack of an internal cache. CPU instructions often execute

     faster than they can be fetched from memory, even with a big and fast

     external cache. Therefore, the integer performance of the RapidCAD

     exceeds that of a 386 by *at most* 35%. This value was derived by

     running some programs that use mostly register-to-register operations

     and few memory accesses, and is supported by the SPEC ratings that Intel

     reports for the 386-33 and the RapidCAD-33: while the 386-33 has a

     SPECint of 6.4, the RapidCAD has a SPECint of 7.3 [28], a 14% increase.

     (Note that these tests used the old [1989] SPEC benchmarks suite.)

     While CPU and integer instructions often execute in one clock cycle on

     the RapidCAD, floating-point operations always take more than seven

     clock cycles. They are therefore rarely slowed down by the low-bandwidth

     386 bus interface; My tests show a 70%-100% performance increase for

     floating-point intensive benchmarks over a 386-based system using the

     Intel 387DX math coprocessor. This is consistent with the SPECfp rating

     reported by Intel. The 386/387 at 33 MHz is rated at 3.3 SPECfp, while

     the RapidCAD is rated at 6.1 SPECfp at the same frequency, an 85%

     increase. This means that a system that uses the RapidCAD is faster than

     *any* 386/387 combination, regardless of the type of 387 used, whether

     an Intel 387DX or a faster 387 clone. The diagnostic disk for the

     RapidCAD also gives some application performance data for the RapidCAD

     compared to the Intel 387DX:

             Application      Time w/ 387DX  Time w/ RapidCAD  Speedup

             AutoCAD 11              52 sec         32 sec       63%

             AutoShade/Renderman    180 sec        108 sec       67%

             Mathematica(Windows  ) 139 sec        103 sec       35%

             SPSS/PC+ 4.01           17 sec         14 sec       21%

     RapidCAD is available in 25 MHz and 33 MHz versions. It is distributed

     through different channels than the other Intel math coprocessors, and I

     have therefore been unable to obtain a data sheet for it. [78] gives the

     typical power consumption of the 33 MHz RapidCAD as 3500 mW, which is

     the same as for the 33 MHz 486DX. The RapidCAD-1 chip gets quite hot

     when operating. Therefore, I recommend extra cooling for it (see the

     paragraph below on the 486 for details). The RapidCAD-1 is packaged in a

     132-pin PGA, just like the 80386, and the RapidCAD-2 is packaged in a

     68-pin PGA like a 80387 coprocessor.

Intel 486DX

     The Intel 486DX is, of course, not solely a coprocessor. This chip,

     first introduced by Intel in 1989, functionally combines the CPU (a

     heavily-pipelined implementation of the 386 architecture) with an

     enhanced 387 (the chip's floating-point unit, FPU) and 8 KB of unified

     on-chip code/data cache. (This description is necessarily simplified;

     for a detailed hardware description, see [52].) The 486DX offers about

     two to three times the integer performance of a 386 at the same clock

     frequency, while floating-point performance is about three to four times

     as high as the Intel 387DX at the same clock rate [29]. Since the FPU is

     on the same chip as the CPU, the considerable communication overhead

     between CPU and coprocessor in a 386/387 system is omitted, letting FPU

     instructions run at the full speed permitted by the implementation. The

     FPU also takes advantage of the on-chip cache and the highly pipelined

     execution unit. The concurrent execution of CPU and coprocessor

     instructions typical for 80x86/80x87 systems is still in existence on

     the 486, but some FPU instructions like FSIN have nearly no concurrency

     with CPU instructions, indicating that they make heavy use of both, CPU

     and FPU resources [53, 1].

     Besides its higher performance, the 486 FPU provides more accurate

     transcendental functions than the 387DX coprocessor, according to my

     tests (see below). To achieve better interrupt latency, FPU instructions

     with a long execution times have been made abortable if an interrupt

     occurs during their execution.

     Due to the considerable amount of heat produced by these chips, and

     taking into consideration the slow air flow provided by the fan in

     garden-variety PC tower cases, I recommend an extra fan directly above

     the CPU for safer operation. If you measure the surface temperature of

     an 486DX after some time of operation in a normal tower case without

     extra cooling, you may well come up with something like 80-90 degrees

     Celsius (that is 175-195 degrees Fahrenheit for those not familiar with

     metric units) [54,55]. You don't need the well known (and expensive)

     IceCap[tm] to effectively cool your CPU; a simple fan mounted directly

     above the CPU can bring the temperature of the chip down to about 50-60

     degrees Celsius (120-140 degrees Fahrenheit), depending on the room

     temperature and the temperature within the PC case (which depends on the

     total power dissipation of all the components and the cooling provided

     by the fan in the system's power supply). According to a simple rule

     known as Arrhenius' Law, lowering the temperature by 10 degrees Celsius

     slows down chemical reactions by a factor of two, so lowering the

     temperature of your CPU by 30 degrees should prolong the life of the

     device by a factor of eight, due to the slower ageing process. If you

     are reluctant to add a fan to your system because of the additional

     noise, settle for a low-noise fan like those available from the German

     manufacturer Pabst (this is not meant to be an advertisement; I am just

     the happy owner of such a fan, and have no other connections to the

     firm).

     The 486DX comes in a 168 pin ceramic PGA (pin grid array). It is

     available in 25 MHz and 33 MHz versions. Since the end of 1991, a 50 MHz

     version has also been available, manufactured in a CHMOS V process (the

     25 MHz and 33 MHz are produced using the CHMOS IV process). Maximum

     power consumption is 3500 mW for the 25 MHz 486 (2600 mW typical), 4500

     mW for the 33 MHz version (3500 mW typical), and 5000 mW (3875 mW

     typical) for the 50 MHz chip.

Intel 486DX2

     The 486DX2 represents the latest generation of Intel CPUs. The "DX2"

     suffix (instead of simply DX) is meant to be an indicator that these are

     clock-doubled versions of the basic CPU. A normal 486DX operates at the

     frequency provided by the incoming clock signal. A 486DX2 instead

     generates a new clock signal from the incoming clock by means of a PLL

     (phase locked loop). In the DX2, this clock signal has twice the

     frequency of the incoming clock, hence the name clock-doubler. All

     internal parts of the 486DX2 (cache, CPU core, and FPU) run at this

     higher frequency; only the bus interface runs at the normal (undoubled)

     speed. Using this technique, an Intel 486DX2-50 can run on an unmodified

     motherboard designed for 25 MHz operation. Since motherboards which run

     at 50 MHz are much harder to design and build than those for 25 MHz,

     this makes a 486DX2-50 system cheaper than an 'equivalent' 486DX-50

     system.

     For all operations that don't access off-chip resources (e.g., register

     operations), a 486DX2-50 provides exactly the same performance as a

     486DX-50, and twice the performance of a 486DX-25. However, since the

     main memory in a 486DX2-50 systems still operates at 25 MHz, all

     instructions involving memory accesses are potentially slower than in a

     486DX-50 system, whose memory also (presumably) runs at 50 MHz. The

     internal cache of the 486 helps this problem a bit, but overall

     performance of a 486DX2-50 is still lower than that of a 486DX-50.

     Intel's documentation [32] shows this drop to be quite small, although

     it is highly dependent upon the particular application.

     The truly wonderful thing about the 486DX2 is that it allows easy

     upgrading of 25 and 33 MHz 486 systems, since the 486DX2 is completely

     pin-compatible with the 486DX: you need just take out the 486DX and plug

     in the new 486DX2. Note that power consumption of the 486DX2-50 equals

     that of the 486DX-50 (4000 mW typical, 4750 mW max.), and that the

     486DX2-66 exceeds this by about 25% (4875 mW typical, 6000 mW max.).

     These chips get *really* hot in a standard PC case with no extra

     cooling, even if they come with an attached heat sink by default. (See

     the discussion above for more detailed information on this problem and

     possible solutions).

Intel 487SX

     The 487SX is the math coprocessor intended for use in 486SX systems. The

     486SX is basically a 486DX without the floating-point unit (FPU) [48,

     50]. (Originally Intel sold 486DXs with a defective FPU as 486SXs but it

     has now completely removed the FPU part from the 486SX mask for mass

     production.) The introduction of the 486SX in 1991 has been viewed by

     many as a marketing 'trick' by Intel to take market share from the 386

     based systems once AMD became successful with their Am386. (AMD has

     taken as much as 40% of the 386 market due to some superior features

     such as higher clock frequency, lower power consumption, fully static

     design, and availability of a 3V version). A 486SX at 20 MHz delivers

     a bit less integer performance than a 40 MHz Am386.

     To add floating-point capabilities to a 486SX based system, it would

     seem to be easiest to swap the 486SX for a 486DX, which includes the FPU

     on-chip. However, Intel has prevented this easy solution by giving the

     486SX a slightly different pin out [48, 51]. Since only three pins are

     assigned differently, clever board manufacturers have come out with

     boards that accept anything from a 486SX-20 to a 486DX2-50 in their CPU

     socket and by doing so provide a clean upgrade path. A set of three

     jumpers ensures correct signal assignment to the changed pins for either

     CPU type. To upgrade 486SX systems without this feature, you are forced

     to buy a 487SX and install it in the "Performance Upgrade Socket"

     (present in most systems).

     Once the 487SX was available, it was quickly found out that it is just a

     normal 486DX with a slightly different pinout [49]. Technically

     speaking, the solution Intel chose was the only practical way to provide

     a 486SX system with the high level of floating-point performance the

     486DX offers. The CPU and FPU must be on the same chip; otherwise, the

     FPU cannot make use of the CPU's internal cache and there would be

     considerable overhead in CPU-FPU communication (similar to a 386/387

     system), nullifying most of the arithmetic speedups over the 387. That

     the 486SX, 487SX, and 486DX are *not* pin-compatible seems to be purely

     for marketing reasons.

     To upgrade a 486SX based system, Intel also offers the OverDrive chip,

     which is just the same as a 487SX with internal clock doubling. It also

     goes into the motherboard's "Performance Upgrade Socket". The OverDrive

     roughly doubles the performance of a 486SX/487SX based system. (For a

     explanation of clock doubling, see the description of the Intel 486DX2

     above.)

     Inserting the 487SX effectively shuts down the 486SX in the 486SX/487SX

     system, so the 486SX could be removed once the 487SX is installed. Since

     the shut down is logical, not electrical, the 486SX still uses power if

     used with the 487SX, although it is inoperational. As with the 486SX,

     the 487SX is currently available in 20 MHz and 25 MHz versions. At 20

     MHz, the 487SX has a power consumption of max. 4000 mW (3250 mW

     typical). It is available in a 169 pin ceramic PGA (pin grid array).

Weitek 1167

     This math coprocessor was the predecessor of the Weitek Abacus 3167. It

     was actually a small printed circuit board with three chips mounted on

     it. In contrast to the Weitek 3167, the 1167 did not have a square root

     instruction; instead, the square root function was computed by means of

     a subroutine in the Weitek transcendental function library. However, the

     1167 did have a mode in which it supported denormal numbers. (The Weitek

     3167 and 4167 only implement the 'fast' mode, in which denormals are not

     supported.) Overall performance of the 1167 is slightly less than that

     of the Weitek 3167.

Weitek 3167

     The 3167 was introduced by Weitek in 1989 and provided the fastest

     floating-point performance possible on a 386 based system at that time.

     The 3167 is not a real coprocessor, strictly speaking, but rather a

     memory-mapped peripheral device. The architecture of the 3167 was

     optimized for speed wherever possible. Besides using the faster memory

     mapped interface to the CPU (the 80x87 uses IO-ports), it does not

     support many of the features of the 80x87 coprocessors, allowing all of

     the chip's resources to be concentrated on the fast execution of the

     basic arithmetic operations. (For a more detailed description of the

     Weitek 3167, see the first chapter of this document.)

     In benchmark comparisons, the Weitek 3167 provided up to 2.5 times the

     performance of an Intel 387DX coprocessor. For example, on a 33 MHz 3167

     the Whetstone benchmark performed at 7574 kWhetstones/sec compared with

     the 3743 kWhetstones/s for the Intel 387DX. (Note, however, that these

     are single-precision results and that the Weitek 3167's performance

     would drop to about half the stated rate for double-precision, while the

     value for the Intel 387DX would change very little.) In any case, before

     the advent of the Intel RapidCAD, the Weitek 3167 usually outperformed

     all 387-compatible coprocessors, even for double-precision operations

     [63,65,69]. For typical applications, the advantage of the Weitek 3167

     over the 387 clones is much smaller. In a benchmark test using

     AutoDesk's 3D-Studio the Weitek 3167 performed at 123% of the Intel

     387DX's performance compared with 106% for the Cyrix FasMath 83D87 and

     118% for the Intel RapidCAD.

     The Weitek Abacus 3167 is packaged in a 121-pin PGA that fits into an

     EMC socket (provided in most 386-based systems). It does *not* fit into

     the normal 68-pin PGA socket intended for a 387 coprocessor.

     To get the best of both worlds, one might want to use a Weitek 3167 and

     a 387 compatible coprocessor in the same system. These coprocessors can

     coexist in the same system without problems; however, most 386-based

     systems contain only one coprocessor socket, usually of the EMC

     (extended math coprocessor) type. Thus, you can install either a 387

     coprocessor or a Weitek 3167, but not both at the same time. There *are*

     small daughter boards available that plug into the EMC socket and

     provide two sockets, an EMC and a standard coprocessor socket.

     At 25 MHz, the Weitek 3167 has a power consumption of max. 1750 mW. At

     33 MHz, max. power consumption is 2250 mW.

Weitek 4167

     The 4167 is a memory-mapped coprocessor that has the same architecture

     as the 3167; it is designed to provide 486-based systems with the

     highest floating-point performance available. It executes coprocessor

     instructions at three to four times the speed of the Weitek 3167.

     Although it is up to 80% faster than the Intel 486 in some benchmarks

     [1,69], the performance advantage for real application is probably more

     like 10%. The introduction of the 486DX2 processors has more or less

     obliterated the need for a Weitek 4167, since the DX2 CPUs provide the

     same performance as the Weitek, as well as the additional features the

     80x87 architecture has that the Weitek does not.

     The Weitek 4167 is packaged in a 142-pin PGA package that is only

     slightly smaller than the 486's package. At 25 MHz, it has a max. power

     consumption of 2500 mW [32].

======================================

Finding out which coprocessor you have

======================================

If you are interested in programming techniques which allow the detection and

differentiation of the coprocessors described above, I refer you to my

COMPTEST program. COMPTEST reliably detects the type and clock frequency of

most CPUs and coprocessors installed in your machine. The current version is

CTEST259.ZIP, with future versions to be called CTEST260, CTEST261 and so on.

COMPTEST can correctly identify all of the coprocessors described above, with

the exception of the Weitek chips, for which the detection mechanism is not

that reliable.

COMPTEST is in the public domain and comes with complete source code. It is

available via anonymous ftp from garbo.uwasa.fi and additional ftp sites that

mirror garbo.

================================================

Current coprocessor prices and purchasing advice

================================================

Due to mid-1992 price slashing by Cyrix (and subsequently, Intel) for 387

coprocessors, prices have dropped significantly for all 287 and 387

compatibles, with hardly any price difference between manufacturers. 387DX

compatible coprocessors typically sell for ~US$ 70 for all speeds except for

40 MHz versions, which are typically ~US$ 80. 387SX compatible coprocessors

sell for ~US$ 65, regardless of speed, with the exception of the 33 MHz

versions, which are ~US$ 70. The Intel 287XL sells for ~US$ 60, while the

IIT 2C87 and Cyrix 82S87 each sell for about US$ 50. 8087s may be more

expensive, the price of an 8087-10 being ~US$ 85. The Intel RapidCAD sells

for about US$ 240 now. The Weitek Abacus 3167-33 is being offered for US$ 170

and the is 4167-33 being offered for US$ 300. The Intel 486SX OverDrive is

available for ~US$ 450 for the 33 MHz version, while the Intel 486DX2-66 costs

~400 US$. This price information reflects the price situation as of 05-01-94;

prices can be expected to drop slightly in the near future. Also prices can

vary locally, so take the above as rough ideas what to expect if you go out

and buy a math coprocessor

Which coprocessor should you buy?

---------------------------------

Several computer magazines have published application-level performance

comparisons for various 387 coprocessors and Weitek's ABACUS 3167 and 4167

chips [1,25,68,70]. Applications tested included AutoCAD R11, RenderStar,

Quattro Pro, Lotus 1-2-3, and AutoDesk's 3D-Studio. For most tests,

performance improvements for the 387 clones over Intel's 387DX were small to

marginal, the clones running the applications no more than 5-15% faster than

the Intel 387DX. In the test of 3D-Studio, one of the few programs that

directly supports the Weitek Abacus, the Weitek 3167 improved performance by

23% over an Intel 387DX and the 4167 improved performance by 10% over the

486DX [1].

If you have a high demand for floating-point performance, consider buying

a system based on the 486DX and 486DX2 CPUs from Intel, AMD, or Cyrix (or

even a Intel Pentium machine if you have enough money to spend), rather

than a motherboard based on the Intel 386DX, AMD 386DX, Cyrix 486DLC,

TI 486SXL, IBM 486SLC2, or IBM Blue Lightning with an additional math

coprocessor. With a math coprocessor that is external to the CPU, there is

a lot of communication overhead which limits floating-point performance,

even if the CPU is clock-doubled or clock-tripled and the math coprocessor

is also clock-doubled. So while the integer performance of such systems

reaches 486DX levels in many cases, the floating-point performance is still

significantly below 486DX performance. Currently, price/performance arguments

do not apply here, though. An AMD 386DX/40 MHz or Cyrix 486DLC based ISA

motherboard including the math coprocessor currently sells for ~US$ 180.

A 486DX-40 MHz VLB motherboard based on CPUs from AMD or Cyrix sells for

US$ 350. So with regard to floating-point performance, one gets twice the

performance for twice the price.

If you want to push your 386-based system to its maximum floating-point

performance and can't switch to a 486, I recommend the Intel RapidCAD

chipset. It is faster [1] than installing a Weitek Abacus 3167 in a

386 system, which used to be the highest performing combination before

the RapidCAD was introduced.

In a similar vein, the introduction of the Intel 486DX2 clock-doubler chips

has obliterated the need for a Weitek 4167 to get maximum floating-point

performance out of a 486-based system. A 486DX2-66 performs at or above the

performance level of a 33 MHz Weitek 4167, even if the latter uses single-

precision rather than double-precision. The 486DX-66 is rated by Intel at

24700 double-precision kWhetstones/sec and 3.1 double-precision Linpack

MFLOPS. (Of course, these benchmarks used the highest performance compilers

available. But even with a Turbo Pascal 6.0 program, I managed to squeeze 1.6

double-precision MFLOPS out of the 486DX2-66 for the LLL benchmark [for a

description of these benchmarks, see the paragraph on benchmarks below].)

With the introduction of the Intel Pentium, floating-point performance for

80x86 based machines has clearly climbed to workstation levels. While the

integer performance of a 66 MHz Pentium system is only about twice that of a

486DX2-66, the floating-point performance is 3-4 times as high. I would

recommend a Pentium based system to everybody with a need for extremly

high floating-point performance. For people with a need for average to high

floating-point performance I would recommend a system based on the 486DX2-66s

from Intel, AMD, or Cyrix. Note that the Cyrix 486DX and 486DX2 CPUs offer

somewhat higher floating-point performance than their Intel and AMD rivals.

============================================================

The benchmark programs / Coprocessor performance comparisons

============================================================

The performance statistics below were put together with the help of four

widely-known numeric benchmarks and two benchmarks developed by me. Three

Pascal programs, one FORTRAN program, and two assembly language programs were

used. The assembly language programs were linked with Borland's Turbo Pascal

6.0 for library support, especially to include the coprocessor emulator of

the TP 6.0 run-time library. The Pascal programs were compiled with Turbo

Pascal 6.0, a non-optimizing compiler that produces 16-bit code. The FORTRAN

program was compiled using Microsoft's FORTRAN 5.0, an optimizing compiler

that generates 16-bit code. All programs use double-precision variables

(except PEAKFLOP and SAVAGE, which use double extended precision).

Note that the use of a highly optimizing compiler producing 32-bit code can

give much higher performance for some benchmarks. For example, Intel rates

the 33 MHz 386/387DX at 3290 kWhetstones/sec and 0.4 double-precision LINPACK

MFLOPS [28,29], and it rates the Intel 486 at 12300 kWhetstones/sec and 1.6

double-precision LINPACK MFLOPS [30]. The compilers used in these benchmarks

run by the chip's manufacturer are the ones that give the highest performance

available, and sell in the US$ 1000+ price range. Some of them may even be

experimental or prereleased versions not available to the general public. The

relative performance of one coprocessor to another can and does vary greatly

depending on the code generated by compilers. Non-optimizing compilers tend

to generate a high percentage of operations which access variables in memory,

while optimizing compiler produce code that contains many operations

involving registers. Thus it is well possible that coprocessor A beats

coprocessor B running benchmark Z if compiled with compiler C, but B beats A

when the same benchmark is compiled using compiler D.

All benchmark in this overview were run from floppy under a 'bare-bones' MS-

DOS 5.0 without the CONFIG.SYS and AUTOEXEC.BAT files. This way, it was made

sure no TSR or other program unnecessarily stole computing resources from the

benchmarks.

Description of benchmarks

-------------------------

PEAKFLOP is the kernel of a fractal computation. It consists mainly of a

tight loop written in assembly code and fine-tuned to give maximum

performance. The whole program fits nicely into even a very small CPU cache.

All variables are held in the CPU's and coprocessor's registers, so the only

memory access is for opcode fetches. The main loop contains three

multiplications and five additions/ subtractions; this ratio is fairly

typical for other floating-point intensive programs as well. Due to the

nature of this program, its MFLOPS rate is hardly to be exceeded by any

program that calculates anything useful; thus the name PEAKFLOP. You will

find the source code for PEAKFLOP in appendix B.

TRNSFORM multiplies an array of 8191 vectors with a 3D-transformation matrix

(a 4x4 matrix). Each vector consists of four double-precision values.

Multiplying vectors with a matrix is a typical operation in the manipulation

(e.g. rotation) of 3D objects which are made up from many vectors describing

the object. This benchmark stresses addition and multiplication as well as

memory access. For each vector, 16 multiplications and 12 additions are used,

and about 256 KB of data is accessed during the benchmark run.

For the IIT 3C87, a special version of TRNSFORM was written that makes use of

the special F4X4 instruction available on that coprocessor. F4X4 does a full

multiplication of a 4x4 matrix by a 4x1 vector in a single instruction.

TRNSFORM is implemented as an optimized assembler program linked with the

Turbo Pascal 6.0 library. The full source code can be found in appendix B.

LLL is short for Lawrence Livermore Loops [21], a set of kernels taken from

real floating-point extensive programs. Some of these loops are vectorizable,

but since we don't deal with vector processors here, this doesn't matter. For

this test, LLL was adapted from the FORTRAN original [20] to Turbo Pascal

6.0. By variable overlaying (similar to FORTRAN's EQUIVALENCE statement),

memory allocation for data was reduced to 64 KB, so all data fits into a

single 64 KB segment. The older version of LLL is used here which contains 14

loops. There also exists a newer, more elaborate version consisting of 24

kernels. The kernels in LLL exercise only multiplication and addition. The

MFLOPS rate reported is the average of the MFLOPS rate of all 14 kernels.

All floating-point variables in the programs are of type DOUBLE.

Both LLL and Whetstone results (see below) are reported as returned by my

COMPTEST test program, in which they have been included as a measure of

coprocessor/FPU performance. COMPTEST has been compiled under Turbo Pascal

6.0 with all 'optimizations' on and using my own run-time library, which

gives higher performance than the one included with TP 6.0. My library is

available as TPL60N18.ZIP from garbo.uwasa.fi and ftp sites that mirror this

site.

Linpack [5] is a well known floating-point benchmark that also heavily

exercises the memory system. Linpack operates on large matrices and takes up

about 570 KB in the version used for this test. This is about the largest

program size a pure DOS system can accommodate. Linpack was originally

designed to estimate performance of BLAS, a library of FORTRAN subroutines

that handles various vector and matrix operations. Note that vendors are

free to supply optimized (e.g., assembly language) versions of BLAS. Linpack

uses two routines from BLAS which are thought to be typical of the matrix

operations used by BLAS. Both routines only use addition/subtraction and

multiplication. The FORTRAN source code for Linpack can be obtained from

the automated mail server netlib@ornl.gov. Linpack was compiled using MS

FORTRAN 5.0 in the HUGE memory model (which can handle data structures

larger than 64 KB) and with compiler switches set for maximum optimization.

All floating-point variables in the program are of the DOUBLE type. Linpack

performs the same test repeatedly. The number reported is the maximum MFLOPS

rate returned by Linpack. Linpack MFLOPS ratings for a great number of

machines are contained in [6]. This PostScript document is also available

from netlib@ornl.gov.

Whetstone [2,3,4] is a synthetic benchmark based upon statistics collected

about the use of certain control and data structures in programs written in

high level languages. Based on these statistics, it tries to mirror a

'typical' HLL program. Whetstone performance is expressed by how many

hypothetical 'whetstone' instructions are executed per second. It was

originally implemented in ALGOL. Unlike PEAKFLOP, LLL, and Linpack,

Whetstone not only uses addition and multiplication but exercises all basic

arithmetic operations as well as some transcendental functions. Whetstone

performance depends on the speed of the CPU as well as on the coprocessor,

while PEAKFLOP, LLL, and Linpack place a heavier burden on the coprocessor/FPU.

There exist both old and new versions of Whetstone. Note that results from

the two versions can differ by as much as 20% for the same test configuration.

For this test, the new version in Pascal from [3] was used. It was compiled

with Turbo Pascal 6.0 and my own library (see above) with all 'optimizations'

on. All computations are performed using the DOUBLE type.

SAVAGE tests the performance of transcendental function evaluation. It is

basically a small loop in which the sin, cos, arctan, ln, exp, and sqrt

functions are combined in a single expression. While sin, cos, arctan, and

sqrt can be evaluated directly with a single 387 coprocessor instruction

each, ln and exp need additional preprocessing for argument reduction and

result conversion. According to [14], the Savage benchmark was devised by

Bill Savage, and is distributed by: The Wohl Engine Company, Ltd., 8200 Shore

Front Parkway, Rockaway Beach, NY 11693, USA. Usually, Savage is programmed

to make 250,000 passes though the loop. Here only 10,000 loops are executed

for a total of 60,000 transcendental function evaluations. The result is

expressed in function evaluations per second. SAVAGE source code was taken

from [7] and compiled with Turbo Pascal 6.0 and my own run-time library

(see above).

Benchmark results using the Intel 386DX CPU and various coprocessors

--------------------------------------------------------------------

My benchmark results for 387 coprocessors, coprocessor emulators and the

Intel RapidCAD and Intel 486 CPUs, using the programs described above, on

an Intel 386DX system:

       33.3 MHz       PEAKFLOP TRNSFORM LLL     Linpack Whetstone Savage

                      MFLOPS   MFLOPS   MFLOPS  MFLOPS  kWhet/sec Func/sec

       Intel 386DX WITH:

       EM87 emulator  0.0070   0.0040   0.0050  0.0050         26      418 ##

       Franke387 emu. 0.0307   0.0246   0.0194  0.0179        137     3335 @@

       TP/MS-FORT emu 0.0263   0.0227   0.0167  0.0158        133     3160 %%

       Q387 emulator  0.0768   0.0583   0.0285  0.0288        251     7538 ((

       Intel 387DX    0.7647   0.6004   0.3283  0.2676       2046    43860

       ULSI 83C87     1.0097   0.6609   0.3239  0.2598       2089    47431

       IIT 3C87       0.8455   0.5957   0.3198  0.2646       2203    49020

       IIT 3C87,4X4   0.8455   1.4334   0.3198  0.2646       2203    49020 $$

       ULSI DX/DLC    1.0097   0.6628   0.3228  0.2496       2144    51107

       C&T 38700      0.9455   0.6907   0.3338  0.2700       2376    62565

       Cyrix 387+     0.9286   0.6806   0.3293  0.2669       2435    66890

       Cyrix EMC87    1.0400   0.6628   0.3352  0.2808       2540    71685 //

       Intel RapidCAD 1.8572   1.5798   0.6072  0.4533       3953    72464

       Intel 486DX    2.0800   1.7779   0.9387  0.6682       5143    82192

       40 MHz         PEAKFLOP TRNSFORM LLL     Linpack Whetstone Savage

                      MFLOPS   MFLOPS   MFLOPS  MFLOPS  kWhet/sec Func/sec

       Intel 386DX WITH:

       EM87 emulator  0.0084   0.0080   0.0060  0.0060         31      502 ##

       Franke387 emu. 0.0369   0.0295   0.0233  0.0215        164     4002 @@

       TP/MS-FORT emu 0.0316   0.0273   0.0200  0.0190        160     3794 %%

       Q387 emulator  0.0922   0.0700   0.0342  0.0345        302     9053 ((

       Intel 387DX    0.9204   0.7212   0.3932  0.3211       2428    52677

       ULSI 83C87     1.2093   0.7936   0.3890  0.3120       2528    56926

       IIT 3C87       1.0196   0.7145   0.3834  0.3179       2663    58766

       IIT 3C87,4x4   1.0196   1.7244   0.3834  0.3179       2663    58766 $$

       ULSI DX/DLC    1.2093   0.7935   0.3880  0.3000       2586    61287

       C&T 38700      1.0722   0.7908   0.4007  0.3222       2837    74906

       Cyrix 387+     1.1305   0.8162   0.3945  0.3208       2946    80322

       Cyrix EMC87    1.2381   0.7963   0.4025  0.3324       3061    86083 //

       Intel RapidCAD 2.2128   1.8931   0.7377  0.5432       4810    86957

       Intel 486DX    2.4762   2.1335   1.1110  0.8204       6195    98522

Benchmark results using the Cyrix 486DLC CPU and various coprocessors

---------------------------------------------------------------------

The Cyrix 486DLC is the latest entry into the market of 386DX replacement

processors. It features an Intel 486SX-compatible instruction set, a 1 KB on-

chip cache, and a 16x16 bit hardware multiplier. The RISC-like execution unit

of the 486DLC executes many instructions in a single clock cycle. The

hardware multiplier multiplies 16-bit quantities in 3 clock cycles, as

compared to 12-25 cycles on a standard Intel 386DX. This is especially useful

in address calculations (code from non-optimizing compilers may contain many

MUL instructions for array accesses) and for software floating-point

arithmetic. The 1 KB cache helps the 486DLC to overcome some of the

limitations of the 386 bus interface, and although its hit rate averages only

about 65% under normal program conditions, a 5-15% overall performance

increase can usually be seen for both integer and floating-point-intensive

applications when it is enabled.

The 486DLC's internal cache is a unified data/instruction write-through type,

and can be configured as either a direct mapped or a 2-way set associative

cache. For compatibility reasons, the cache is disabled after a processor

reset and must be enabled with the help of a small routine provided by

Cyrix. Cyrix has also defined some additional cache control signals for some

of the 486DLC pins, intended to improve communication between the on-chip

cache and an external cache. Current 386 systems ignore these signals, since

they are not defined for the standard Intel 386DX. However, future systems

designed with the 486DLC in mind may take advantage of them for increased

performance.

In existing 386 systems, DMA transfers (e.g., by a SCSI controller or a

soundcard) may cause the 486DLC's entire on-chip cache to be flushed, since

no other means exist to enforce consistency between the cache contents and

main memory. This reduces the performance of the 486DLC in these cases. The

486DLC on-chip cache does, however, allow specification of up to four non-

cacheable regions, which is particularly useful if your system has memory

mapped peripherals (e.g., a Weitek coprocessor).

Although I successfully ran my test programs on the Cyrix chip with all

coprocessors, not all of them worked well with my 486DLC in all circumstances.

The IIT 3C87, the Cyrix 83D87 (chips manufactured prior to November 1991),

and the Cyrix EMC87 should not be used with the 486DLC, since they may cause

the computer to lock up if the FSAVE and FRSTOR instructions are used. (These

instructions are typically used in protected mode multiple task environments

to save and restore the coprocessor state for each task. Note that Microsoft

Windows also fits this description.) According to Cyrix, this problem occurs

only with first revision 486DLCs (sample chips such as mine) and has been

fixed since about mid 1993. To be on the safe side, I recommend using the

Cyrix 387+ with the 486DLC, both for assured compatibility and for best

performance. Note that 387+ is a 'Europe only' name and that this chip is

called 83D87 elsewhere, just like the old version. You need to get a 83D87

produced after about October 1991 to guarantee that is works correctly with

any 486DLC; the same caveat applies to the Cyrix 486SLC and the Cyrix 83S87.

If you already have a Cyrix coprocessor, use my COMPTEST program to find out

whether you have a 'new' or 'old' coprocessor. COMPTEST is available as

CTEST260.ZIP via anonymous ftp from garbo.uwasa.fi (in the pc/sysinfo

directory) and other ftp servers that mirror garbo.

The Cyrix 486DLC is currently the 386 'clone' with the highest integer

performance. With the internal cache enabled, integer performance of the

486DLC can be up to 80% higher than that of an Intel 386DX at the same clock

frequency, with the average speed gain for most applications being about 35%.

Floating-point applications are typically accelerated by about 15%-30% when

using a Cyrix 486DLC (with its cache enabled) instead of the Intel 386DX.

       33.3 MHz       PEAKFLOP TRNSFORM LLL     Linpack Whetstone Savage

                      MFLOPS   MFLOPS   MFLOPS  MFLOPS  kWhet/sec Func/sec

       Cyrix 486DLC

       (cache off) WITH:

       EM87 emulator  0.0089   0.0082   0.0062  0.0063         31      472 ##

       Franke387 emu. 0.0402   0.0324   0.0258  0.0240        184     4807 @@

       TP/MS-FORT emu 0.0346   0.0288   0.0206  0.0212        173     4401 %%

       Q387 emulator  0.1053   0.0718   0.0356  0.0370        313     9894 ((

       Intel 387DX    0.8455   0.6552   0.3659  0.3033       2249    48780

       ULSI 83C87     1.1818   0.7543   0.3752  0.3026       2381    53476

       IIT 3C87       0.9541   0.6609   0.3653  0.3036       2476    55814

       IIT 3C87,4X4   0.9541   1.4988   0.3653  0.3036       2476    55814 $$

       ULSI DX/DLC    1.1818   0.7543   0.3752  0.2955       2467    58027

       C&T 38700      1.1183   0.7644   0.3796  0.3087       2703    73350

       Cyrix 387+     1.1305   0.7445   0.3727  0.3060       2731    81967

       Cyrix EMC87    1.2236   0.7593   0.3823  0.3144       2908    88889 //

       Intel RapidCAD 1.8572   1.5798   0.6072  0.4533       3953    72464

       Intel 486DX    2.0800   1.7779   0.9387  0.6682       5143    82192

       40.0 MHz       PEAKFLOP TRNSFORM LLL     Linpack Whetstone Savage

                      MFLOPS   MFLOPS   MFLOPS  MFLOPS  kWhet/sec Func/sec

       Cyrix 486DLC

       (cache off) WITH:

       EM87 emulator  0.0107   0.0098   0.0075  0.0075         37      567 ##

       Franke387 emu. 0.0488   0.0392   0.0311  0.0288        223     5808 @@

       TP/MS-FORT emu 0.0416   0.0345   0.0246  0.0253        208     5284 %%

       Q387 emulator  0.1265   0.0862   0.0429  0.0444        375    11886 ((

       Intel 387DX    1.0196   0.7880   0.4375  0.3644       2712    58479

       ULSI 83C87     1.4247   0.9064   0.4506  0.3630       2868    64171

       IIT 3C87       1.1556   0.7963   0.4399  0.3611       2988    66964

       IIT 3C87,4X4   1.1556   1.7916   0.4399  0.3611       2988    66964 $$

       ULSI DX/DLC    1.4243   0.9064   0.4510  0.3544       2976    69606

       C&T 38700      1.3333   0.9210   0.4548  0.3708       3254    88106

       Cyrix 387+     1.3507   0.8958   0.4477  0.3754       3297    98361

       Cyrix EMC87    1.4648   0.9136   0.4548  0.3773       3505   106572 //

       Intel RapidCAD 2.2128   1.8931   0.7377  0.5432       4810    86957

       Intel 486DX    2.4762   2.1335   1.1110  0.8204       6195    98522

       33.3 MHz       PEAKFLOP TRNSFORM LLL     Linpack Whetstone Savage

                      MFLOPS   MFLOPS   MFLOPS  MFLOPS  kWhet/sec Func/sec

       Cyrix 486DLC

       (cache on) WITH:

       EM87 emulator  0.0099   0.0089   0.0068  0.0069         35      550 ##

       Franke387 emu. 0.0462   0.0362   0.0288  0.0265        205     5445 @@

       TP/MS-FORT emu 0.0410   0.0330   0.0234  0.0241        198     5339 %%

       Q387 emulator  0.1137   0.0784   0.0385  0.0398        336    10455 ((

       Intel 387DX    0.8525   0.6552   0.3941  0.3279       2332    49834

       ULSI 83C87     1.2093   0.7543   0.4068  0.3270       2478    57197

       IIT 3C87       0.9720   0.6609   0.3959  0.3295       2579    57252

       IIT 3C87,4X4   0.9720   1.5087   0.3959  0.3295       2579    57252 $$

       ULSI DX/DLC    1.1954   0.7543   0.4073  0.3214       2564    59583

       C&T 38700      1.1305   0.7644   0.4126  0.3343       2839    75949

       Cyrix 387+     1.1429   0.7445   0.4023  0.3310       2866    85349

       Cyrix EMC87    1.2381   0.7593   0.4150  0.3412       3051    93897 //

       Intel RapidCAD 1.8572   1.5798   0.6072  0.4533       3953    72464

       Intel 486DX    2.0800   1.7779   0.9387  0.6682       5143    82192

       40.0 MHz       PEAKFLOP TRNSFORM LLL     Linpack Whetstone Savage

                      MFLOPS   MFLOPS   MFLOPS  MFLOPS  kWhet/sec Func/sec

       Cyrix 486DLC

       (cache on) WITH:

       EM87 emulator  0.0118   0.0107   0.0082  0.0082         42      659 ##

       Franke387 emu. 0.0565   0.0438   0.0350  0.0313        248     6585 @@

       TP/MS-FORT emu 0.0491   0.0395   0.0279  0.0296        238     6408 %%

       Q387 emulator  0.1365   0.0942   0.0463  0.0477        403    12555 ((

       Intel 387DX    1.0297   0.7880   0.4748  0.3937       2801    59821

       ULSI 83C87     1.4445   0.9028   0.4891  0.3926       2976    65789

       IIT 3C87       1.1686   0.7963   0.4734  0.3916       3096    68729

       IIT 3C87,4X4   1.1686   1.8057   0.4734  0.3916       3096    68729 $$

       ULSI DX/DLC    1.4445   0.9064   0.4893  0.3864       3069    71514

       C&T 38700      1.3685   0.9173   0.4958  0.4012       3401    91185

       Cyrix 387+     1.3867   0.8958   0.4887  0.3962       3448   102564

       Cyrix EMC87    1.4857   0.9100   0.4959  0.4091       3676   112360 //

       Intel RapidCAD 2.2128   1.8931   0.7377  0.5432       4810    86957

       Intel 486DX    2.4762   2.1335   1.1110  0.8204       6195    98522

Benchmark results using the C&T 38600DX CPU and various coprocessors

--------------------------------------------------------------------

The Chips&Technologies 38600DX CPU is marketed as a 100% compatible

replacement for the Intel 386DX CPU. Unlike AMD's Am386, which uses microcode

that is identical to the Intel 386DX's, the C&T 38600DX uses microcode

developed independently by C&T using "clean-room" techniques. C&T even

included the 386DX's "undocumented" LOADALL386 instruction into the

instruction set to provide full compatibility with the 386DX. In my tests,

however, I observed that the 38600DX has severe problems with the CPU-

coprocessor communication, which causes the floating-point performance to

drop below that of the Intel 386DX/Intel 387DX for most programs. This

problem exists with all available 387-compatible coprocessors (ULSI 83C87,

IIT 3C87, Cyrix EMC87, Cyrix 83D87, Cyrix 387+, C&T 38700, Intel 387DX). A

net.aquaintance also did tests with the 38600DX and arrived at similar

results. He contacted C&T and they said that they were aware of the problem.

Some instructions execute faster on the C&T 38600DX than on the 386DX, giving

an average speedup of 5-10% for integer applications. C&T also produces a

38605DX CPU that includes a 512 byte instruction cache and provides a further

performance increase. However, the 38605DX needs a bigger socket (144-pin

PGA) and is therefore *not* pin-compatible with the 386DX. Tests using the

38600DX were run at 33.3 MHz, as a 40 MHz version was not available as of 09-

17-92 and running the 33 MHz chip version at 40 MHz locked up the machine

frequently. Unfortunately, tests using the Intel 387DX consistently locked up

in the TRNSFORM benchmark when run at 33.3 MHz. It ran fine at 20 MHz, and

the results were scaled to show expected performance at 33.3 MHz.

       33.3 MHz       PEAKFLOP TRNSFORM LLL     Linpack Whetstone Savage

                      MFLOPS   MFLOPS   MFLOPS  MFLOPS  kWhet/sec Func/sec

       C&T 38600DX WITH:

       Intel 387DX    0.7376   0.5620   0.3337  0.2636       2066    45489

       ULSI 83C87     0.5226   0.4690   0.3236  0.2654       2087    43228

       IIT 3C87       0.7879   0.5762   0.3397  0.2674       2263    51195

       IIT 3C87,4X4   0.7879   0.6181   0.3397  0.2674       2263    51195 $$

       C&T 38700      0.5977   0.5572   0.3463  0.2681       2338    63966

       Cyrix 387+     0.5896   0.5508   0.3438  0.2673       2375    66741

       Intel RapidCAD 1.8572   1.5798   0.6072  0.4533       3953    72464

       Intel 486      2.0800   1.7779   0.9387  0.6682       5143    82192

       For comparison:

                      PEAKFLOP TRNSFORM LLL     Linpack Whetstone Savage

                      MFLOPS   MFLOPS   MFLOPS  MFLOPS  kWhet/sec Func/sec

       Pentium-66    11.5557   8.1900   2.5971  2.2150      44000   337079 ))

       i486DX2-66     4.1601   3.4227   1.6531  1.3010      10655   163934

       i486DX2-50     3.0589   2.6665   1.2537  0.9744       7962   123203

       Cyrix EMC87-25 0.7800   0.4971   0.2514  0.2106       1905    53763 [[

       IIT 3C87-25    0.6341   1.0751   0.2399  0.1985       1652    36765 $$,[[

       IIT 3C87-25    0.6341   0.4467   0.2399  0.1985       1652    36765 [[

       i387, 20 MHz   0.2253   0.3271   0.1434  0.1171        952    21739 ++

       i387DX, 20 MHz 0.3567   0.4444   0.1484  0.1161       1034    24155 &&

       i80287, 5 MHz  0.0281   0.0310   0.0242  0.0222        150     3261 !!

       i8087,9.54 MHz 0.0636   0.0705   0.0321  0.0219        234     5782 **

Benchmark notes and footnotes

-----------------------------

Hardware configuration for test of 387 coprocessors with C&T 38600DX, Intel

386DX, Cyrix 486DLC, and Intel RapidCAD CPUs:

     System A: Motherboard with Forex chip set, 128 KB CPU Cache, 8 MB RAM

Hardware configuration for test of 486DX FPU (extra fan for 40 MHz operation):

     System B: Motherboard with SIS chip set, 256 KB CPU Cache, 8 MB RAM

 ## EM87 V1.2 by Ron Kimball is a public domain coprocessor emulator that

    loads as a TSR. It uses INT 7 traps emitted by 80286, 80386, or 486SX

    systems with no coprocessor upon encountering coprocessor instructions

    to catch coprocessor instructions and emulate them. Whetstone and Savage

    benchmarks for this test were compiled with the original TP 6.0 library,

    as EM87 chokes on the 387 specific FSIN and FCOS instructions used in my

    own library if a 387 is detected. Obviously EM87 identifies itself as a

    387, but it has no support for 387-specific instructions.

 @@ Franke387 is a commercial 387 emulator that is also available in a

    shareware version. For this test, shareware version V2.4 was used.

    Franke387 unlike many other emulators supports all 387 instructions.

    It is loaded as a device driver and uses INT 7 to trap coprocessor

    instructions.

 (( Q387 is an emulator that is distributed as a shareware program by

    Quickware of Austin, Texas. As the name implies, this emulator uses

    386 specific code and supports the full 387 instruction set. The

    program is about 360 kByte in size and loads completely into extended

    memory, using absolutely no DOS memory. It is loaded as a TSR and

    requires an EMM (expanded memory manager) to be present. For the

    tests done for this version of this article, QEMM 7.04 was used. The

    emulation uses the INT 7 mechanism. The version of Q387 used for this

    version of this report was 3.63. Q387 seems to be the only coprocessor

    emulator that is still continously being updated.

 %% These benchmarks were run using the built-in coprocessor emulators of

    the TP 6.0 (for Savage, LLL, Whetstone, TRNSFORM, PEAKFLOP) and the MS

    FORTRAN 5.0 (for Linpack) run-time libraries by forcing the libraries

    into not using a coprocessor by using the environment settings NO87=NC

    and 87=N.

 $$ The 3C87 specific F4X4 instruction was used in the vector transformation

    benchmark.

 // The EMC87 was used in the 387-compatible mode only. The faster memory-

    mapped mode was *not* used. Times should therefore be identical to the

    Cyrix 83D87.

 ++ Older motherboard with no chip set (discrete logic), no CPU cache, 16 MB

    RAM

 && System A, CPU cache disabled via extended set-up, turbo-switch set to

    half speed (that is, 20 MHz)

 [[ System A, CPU Intel 386DX, oscillator changed to run the system at 25 MHz.

 )) System based on an Intel motherboard with 256 KByte of CPU cache and 16

    MB of RAM with an AMI BIOS.

 !! 80386 @ 20 MHz / Intel 80287 @ 5 MHz, no CPU cache, 4 MB RAM due to the

    fast CPU used here, performance figures are somewhat higher than can be

    expected for a 80286/287 combination, except for the PEAKFLOP benchmark,

    which is basically coprocessor limited.

 ** 8086/8087 system with 640 KB RAM

Benchmark results for Weitek coprocessors

------------------------------------------

Since neither a Weitek coprocessor nor a compiler that generates code for the

Weitek chips were available to me, performance data for the Weitek Abacus is

given here according to [31,32] and scaled to show performance of a 33 MHz

system. The benchmarks were compiled using highly-optimizing 32-bit

compilers.

                              Single Prec.     Double Prec.    Double Prec.

                              3167    4167     3167    4167      387    486

         Linpack MFLOPS        1.8     5.0      0.8     3.2      0.4    1.6

         Whetstone kWhet/sec  7470   22700     4900   14000     3290  12300

Note that for the Intel coprocessors, running programs in single vs. double-

precision doesn't provide much of an performance advantage since all internal

calculations are always done in extended precision. Using Weitek

coprocessors, however, performance nearly doubles in single-precision mode.

For double-precision calculations using only basic arithmetic, the Weitek

Abacus can at most provide performance at twice the level of the respective

Intel coprocessor (387/486) at the same clock speed.

         Comparison of floating-point performance [30,32]

                                      single-precision

                          Weitek 4167-33    Intel 486-33   Intel 486DX2-66

         Linpack MFLOPS            5.0           1.8             3.5

         Whetstones kWhet/sec    22700         12700           25500

                                      double-precision

                        Weitek 4167-33  Intel 486-33 Intel 486DX2-66

         LINPACK MFLOPS            3.5           1.6             3.1

         kWhetstones/sec         14000         12300           24700

=============================================================================

Clock-cycle timings for coprocessor instructions on various coprocessor chips

=============================================================================

Speed of various coprocessor instructions, measured in clock cycles, as

captured by my program 387TIMES. Error is +/- one clock cycle, except for the

Intel 80287. Times for the 80287 were determined on a system with a 20 MHz

80386 and a 5 MHz Intel 80287. Therefore, times may differ from a genuine

80286/287 system, especially for those instructions that access an operand in

memory. Since the times are stated as the number of coprocessor clock cycles

used, the faster 386 which can execute four clock cycles where the 80287

executes one clock cycle may decrease memory access times as seen by the

coprocessor.

Due to the limited accuracy of the timer used to measure the speed of FPU

instructions combined with the high clock frequency and the high execution

speed for simple FPU instructions on the Pentium, the times for fast

instructions could not be measured reliably. The data given represents the

average from several runs of 387TIMES. The times for slower instructions

are accurate to about +/- one clock cycle as stated above.

The CPU used in testing the 387 coprocessors was an Intel 386DX. Note that

due to the improved coprocessor interface of the Cyrix 486DLC the execution

time of most coprocessor instructions drops by 2-3 clock cycles when used

with this CPU.

             Intel   Intel  Intel  Cyrix Cyrix C&T  ULSI   ULSI  IIT   Intel Intel

             Pentium i486 RapidCAD 83D87 387+ 38700 DX/DLC 83C87 3C87  387DX 80387

           FLD1   1     4     3    14    14    14   19     18    24    23    26

           FLDZ   1     4     3    14    14    14   19     18    24    23    31

          FLDPI   3     7     8    14    15    14   19     18    24    38    45

         FLDLG2   3     7     8    14    14    14   19     18    24    33    45

         FLDL2T   3     7     8    14    14    14   19     19    24    38    45

         FLDL2E   3     7     8    14    14    14   19     19    24    38    45

         FLDLN2   3     7     8    14    14    14   19     19    24    38    45

      FLD ST(0)   1     4     4    14    14    14   14     14    24    20    21

      FST ST(1)   2     3     4    14    14    14   14     14    19    18    22

     FSTP ST(0)   2     4     4    14    14    14   15     15    19    19    22

     FSTP ST(1)   3     4     4    15    15    14   15     15    19    20    22

      FLD ST(1)   1     4     4    14    14    14   14     14    24    18    21

     FXCH ST(1)   1     4     4    14    20    14   19     19    24    24    27

    FILD [Word]   1    12    16    33    37    32   42     42    38    47    62

   FILD [DWord]   1     8    11    26    26    21   33     32    28    35    45

   FILD [QWord]   1     9    15    30    30    25   37     36    32    34    54

    FLD [DWord]   1     3     5    26    26    21   23     23    28    20    25

    FLD [QWord]   1     3     7    30    30    25   27     27    32    24    35

    FLD [TByte]   3     5    11    46    46    46   46     46    47    46    57

   FBLD [TByte]  46    83    90    66    86   106  146    146   197    71   278

    FIST [Word]   5    31    31    37    40    37   42     42    51    69    90

   FIST [DWord]   5    29    30    35    40    35   40     40    49    66    84

    FST [DWord]   1     7     7    35    37    32   40     40    33    37    40

    FST [QWord]   1     8     9    43    43    39   47     47    40    45    51

   FISTP [Word]   8    32    32    42    40    37   43     43    46    70    90

  FISTP [DWord]   9    31    31    40    40    35   41     41    50    67    87

  FISTP [QWord]   8    29    29    44    44    42   48     48    56    73    92

   FSTP [DWord]   5     8     8    38    36    32   41     41    35    38    43

   FSTP [QWord]   5     9     9    46    43    39   48     48    42    46    49

   FSTP [TByte]   6     8     8    50    45    49   50     50    48    53    58

  FBSTP [TByte] 155   170   172    98    98   114  132    129   218   144   533

          FINIT  21    17    31    15    16    15   15     15    16    16    25

          FCLEX   8     7    20    15    16    16   15     16    16    16    25

           FCHS   1     7     8    14    15    14   14     14    19    30    33

           FABS   1     5     5    14    15    14   14     14    19    30    33

           FXAM  16    12    13    14    15    14   14     14    19    39    43

           FTST   1     5     5    19    25    14   24     24    24    34    38

         FSTENV  60    67    82   125   125   124  132    132   124   159   165

         FLDENV  37    44    59   106   106   112  117    120   106   119   129

          FSAVE 154   181   169   355   355   374  362    361   376   469   511

         FRSTOR  74   130   203   358   358   385  369    372   371   420   456

    FSTSW [mem]   4     4     5    14    14    14   14     14    14    14    17

       FSTSW AX   4     3     4    12    12    11   11     11    11    11    14

    FSTCW [mem]   2     4     5    14    14    13   13     13    13    14    18

    FLDCW [mem]   7     4    11    26    26    31   25     32    27    32    36

  FADD ST,ST(0)   2     8     9    19    20    19   19     19    24    24    32

  FADD ST,ST(1)   3     9     9    19    20    19   18     18    24    20    32

  FADD ST(1),ST   3    10    10    19    20    19   18     18    24    24    37

 FADDP ST(1),ST   3    11    11    19    19    19   15     16    24    25    37

   FADD [DWord]   1     9    10    25    28    22   23     23    23    21    34

   FADD [QWord]   1     9    10    32    32    26   27     27    27    25    38

   FIADD [Word]   3    20    21    34    34    33   39     40    40    52    80

  FIADD [DWord]   3    20    21    27    28    27   29     30    30    37    61

  FSUB ST(1),ST   3    10    10    19    20    19   19     19    24    24    38

 FSUBR ST(1),ST   2     9    10    19    22    19   19     19    24    27    38

FSUBRP ST(1),ST   2    10    10    19    19    22   19     20    24    25    38

   FSUB [DWord]   2    11    12    27    28    27   23     23    29    27    32

   FSUB [QWord]   2    11    12    32    32    31   27     27    33    26    44

   FISUB [Word]   3    21    21    34    34    34   39     40    40    52    80

  FISUB [DWord]   3    21    22    27    28    27   29     29    30    40    60

  FMUL ST,ST(1)   2    16    17    19    25    24   24     24    29    38    57

  FMUL ST(1),ST   3    16    17    19    24    24   24     24    29    40    62

 FMULP ST(1),ST   2    17    17    19    24    24   25     25    29    40    58

   FIMUL [Word]   3    22    23    40    40    37   45     46    46    52    80

  FIMUL [DWord]   3    22    23    27    28    27   35     36    35    45    68

   FMUL [DWord]   2    11    12    27    28    27   28     28    29    25    45

   FMUL [QWord]   2    14    15    32    32    31   32     32    33    37    61

  FDIV ST,ST(0)  38    73    74    26    40    59   54     54    54    89   100

  FDIV ST,ST(1)  38    73    74    36    45    59   54     54    54    77   100

  FDIV ST(1),ST  38    73    74    36    45    59   54     55    54    78   102

 FDIVR ST(1),ST  38    73    74    36    45    59   54     54    54    77   102

FDIVRP ST(1),ST  38    73    74    36    44    59   55     55    54    76   106

   FIDIV [Word]  39    84    85    52    58    75   75     76    76   105   141

  FIDIV [DWord]  39    84    85    45    46    65   65     65    65   101   123

   FDIV [DWord]  38    73    74    45    46    63   56     56    59    77   101

   FDIV [QWord]  38    73    74    50    50    67   60     60    63    78   103

    FSQRT (0.0)   4    25    25    19    19    14   19     19    24    29    37

    FSQRT (1.0)  70    83    84    36    74    54   89     89    59   109   132

    FSQRT (L2T)  70    86    87    36    74    54   89     89    59   104   137

  FXTRACT (L2T)  12    17    17    19    19    19   28     28    79    53    72

  FSCALE (PI,5)  31    30    30    36    24    24   49     49    79    59    82

   FRNDINT (PI)  19    31    31    19    29    24   34     34    29    49    82

  FPREM (99,PI)  27    58    59    54    99    44   54     54    49    79    96

  FPREM1(99,PI)  41    90    91    54    99    44   59     59    54   104   121

           FCOM   1     5     6    15    20    19   24     25    19    29    32

          FCOMP   2     6     6    15    19    19   25     25    19    30    33

         FCOMPP   2     7     7    15    19    19   25     25    19    31    40

   FICOM [Word]   3    16    17    34    34    33   45     46    34    58    76

  FICOM [DWord]   3    16    16    21    28    21   35     35    23    45    57

   FCOM [DWord]   1     5     6    21    28    22   23     23    23    27    34

   FCOM [QWord]   1     5     8    27    32    25   27     27    27    31    39

     FSIN (0.0)  17    24    24    14    99    14   19     19    24    39    43

     FSIN (1.0)  98   310   313   114   164   144  319    494   219   509   596

      FSIN (PI)  73    88    89   118   189    64  124     64   214   134   152

     FSIN (LG2)  82   292   295    72    89   139  284    454   184   449   531

     FSIN (L2T)  72   299   302   123   179   164  304    469   214   454   536

     FCOS (0.0)  18    24    24    19   159    14   19     19    24    34    42

     FCOS (1.0)  96   302   305    84   104   139  319    489   214   459   547

      FCOS (PI)  72    88    89   154   254    64  119     64   224   199   232

     FCOS (LG2)  83   300   303   108   149   139  279    454   194   504   583

     FCOS (L2T)  72   307   310   159   239   164  299    469   224   509   601

  FSINCOS (0.0)  15    25    25    14    19    19   18     18    34    38    55

  FSINCOS (1.0) 107   353   356   124   174   254  324    493   419   538   636

   FSINCOS (PI)  93   105   106   162   263    79  124     68   424   228   277

  FSINCOS (LG2)  91   340   343   119   159   249  283    458   359   533   627

  FSINCOS (L2T)  93   347   350   168   248   274  303    473   424   538   646

    FPTAN (0.0)  15    25    25    14    19    19   18     18    29    38    46

    FPTAN (1.0) 142   266   269   119   149   184  363    538   309   323   396

     FPTAN (PI) 125   145   146   134   228   104  169    108   304   168   211

    FPTAN (LG2) 126   244   246    94   129   179  328    498   274   298   363

    FPTAN (L2T) 125   247   249   139   219   204  348    513   304   298   365

   FPATAN (0.0)  25    38    39    19    24    19   19     20    29    95    93

   FPATAN (1.0)  93   294   298   124   159    29  374    375   604   360   433

    FPATAN (PI) 132   304   308   139   188   279  359    360   424   375   472

   FPATAN (LG2) 129   290   293   128   154   269  364    365   379   375   448

   FPATAN (L2T) 135   304   308   144   189   274  359    359   424   375   468

    F2XM1 (0.0)  14    25    25    14    14    14   19     19    24    34    37

    F2XM1 (LN2)  52   209   211    89   119   169  389    394   284   299   348

    F2XM1 (LG2)  52   204   206    78   104   159  374    379   284   294   337

    FYL2X (1.0)  39    60    61    36    39    24   74     75    94   115   127

     FYL2X (PI) 104   294   297   108   163   249  449    450   359   395   504

    FYL2X (LG2) 104   311   314   108   159   249  459    460   339   410   518

    FYL2X (L2T) 104   293   296   108   164   249  434    439   359   390   501

  FYL2XP1 (LG2) 103   334   337    99   169   234  459    460   284   435   538

                                486DLC + 386DX +  386DX +   386DX +  386DX +

                   Intel Intel  Q387     Q387     Franke387 TP 6.0   EM87

                   8087  80287  Emulator Emulator Emulator  Emulator Emulator

           FLD1    26     55     42      75       481       422      1626

           FLDZ    21     53     36      70       480       416      1646

          FLDPI    26     55     42      76       486       443      1626

         FLDLG2    26     56     54      75       486       423      1626

         FLDL2T    26     55     43      75       486       440      1626

         FLDL2E    26     53     41      75       486       423      1626

         FLDLN2    26     55     41      75       486       441      1626

      FLD ST(0)    31     55     51      87       493       362      1851

      FST ST(1)    26     54     35      65       489       355      1931

     FSTP ST(0)    26     54     48      79       507       358      2115

     FSTP ST(1)    21     55     53      93       507       356      2116

      FLD ST(1)    26     55     54      97       493       362      1852

     FXCH ST(1)    21     57     60     102       497       486      2187

    FILD [Word]    58     90     87     139       667       712      2259

   FILD [DWord]    64     74     88     141       608       812      2164

   FILD [QWord]    74     93    117     194       652       707      2971

    FLD [DWord]    49     44     78     135       633       473      2077

    FLD [QWord]    54     57     84     137       641       524      2336

    FLD [TByte]    59     45     74     129       607       492      2063

   FBLD [TByte]   309    310    465     775      2019      1512     17827

    FIST [Word]    79     72     88     144       854       766      2418

   FIST [DWord]    84     80     87     142       865       518      2325

    FST [DWord]    89     85     89     148       686       441      2200

    FST [QWord]    99     92     91     145       703       516      2481

   FISTP [Word]    79     80     96     164       864       794      2620

  FISTP [DWord]    79     81     94     158       879       541      2523

  FISTP [QWord]    88     75    127     207       904       916      3226

   FSTP [DWord]    89     75     95     166       713       467      2400

   FSTP [QWord]    93     72     96     161       732       538      2678

   FSTP [TByte]    49     21     83     137       685       467      2124

  FBSTP [TByte]   528    472    696    1140      3305      1555     27013

          FINIT    11     10    116     200       742       641      1369

          FCLEX    11     10     29      48       440       323       912

           FCHS    21     54     34      53       460       354      1744

           FABS    21     54     31      47       456       349      1738

           FXAM    21     54     43      73       481       380      1551

           FTST    51     75     41      70       585       386      2721

         FSTENV    54     57    449     712       928       519      2104

         FLDENV    48     50    443     686      1125       450      1631

          FSAVE   214    244   2088    2932      1949       976      2749

         FRSTOR   209    227   1828    2795      2182       657      2225

    FSTSW [mem]    28     10     52      87       516       401      1189

       FSTSW AX   N/A     55    317     423       451       N/A       N/A

    FSTCW [mem]    28     10     50      74       506       359      1167

    FLDCW [mem]    19     47     54      90       524       437      1584

  FADD ST,ST(0)    86    128    107     170       643       706      2805

  FADD ST,ST(1)    85    116    130     211       707       808      3093

  FADD ST(1),ST    92    131    136     227       664       812      3146

 FADDP ST(1),ST    92    129    137     223       704       799      3143

   FADD [DWord]   105    122    164     266       874       969      3139

   FADD [QWord]   115    122    164     277       888      1021      3396

   FIADD [Word]   115    122    178     286       940      1211      3330

  FIADD [DWord]   125    122    200     285       882      1297      3215

  FSUB ST(1),ST    88    130    147     225       738       817      3156

 FSUBR ST(1),ST    96    132    135     219       740       868      3004

FSUBRP ST(1),ST    99    132    146     242       733       805      3301

   FSUB [DWord]   119    122    173     268       918      1018      3127

   FSUB [QWord]   129    123    171     295       932      1070      3632

   FISUB [Word]   115    123    189     315       977      1081      3802

  FISUB [DWord]   125    125    198     335       940       980      4161

  FMUL ST,ST(1)   145    151    162     395       810      1368      3924

  FMUL ST(1),ST   145    151    162     392       817      1377      3962

 FMULP ST(1),ST   148    168    162     414       840      1365      4164

   FIMUL [Word]   132    151    227     480      1039      1517      4039

  FIMUL [DWord]   141    151    249     479       980      1643      3976

   FMUL [DWord]   125    123    204     439       948      1480      3445

   FMUL [QWord]   175    192    207     478       991      1602      4416

  FDIV ST,ST(0)   201    207    253     369       726      1536      9789

  FDIV ST,ST(1)   203    218    257     435       808      1658     10332

  FDIV ST(1),ST   207    214    251     440       825      1655     10342

 FDIVR ST(1),ST   201    206    260     448       819      1806     10213

FDIVRP ST(1),ST   201    205    281     467       845      1803     10409

   FIDIV [Word]   237    227    315     487       980      1779     11225

  FIDIV [DWord]   246    227    326     510       944      1680     11572

   FDIV [DWord]   229    226    314     447       893      1722     10577

   FDIV [QWord]   236    227    320     522       993      1777     10829

    FSQRT (0.0)    21     57     55      95       512       382      1755

    FSQRT (1.0)   186    206    221     305      1106      2504     37836

    FSQRT (L2T)   186    207    218     312      1398      2467     37925

  FXTRACT (L2T)    51     56     89     182       726       571      3326

  FSCALE (PI,5)    41     56     66     121       817       443      3194

   FRNDINT (PI)    51     58    108     165       808       800      7092

  FPREM (99,PI)    81    131    231     356      1696       941      4098

  FPREM1(99,PI)   N/A    N/A    261     412      1625       N/A       N/A

           FCOM    56     75     87     160       582       483      2799

          FCOMP    61     92     92     172       616       485      2983

         FCOMPP    61     90    115     184       661       476      3198

   FICOM [Word]    79     77    140     236       808       861      3654

  FICOM [DWord]    89     77    144     235       750       964      3684

   FCOM [DWord]    74     75    126     215       741       625      3643

   FCOM [QWord]    74     76    121     206       754       667      3771

     FSIN (0.0)   N/A    N/A     81     137       639       N/A       N/A

     FSIN (1.0)   N/A    N/A    497    1004      4640       N/A       N/A

      FSIN (PI)   N/A    N/A    245     375      2488       N/A       N/A

     FSIN (LG2)   N/A    N/A    482     988      3911       N/A       N/A

     FSIN (L2T)   N/A    N/A    525    1021      3767       N/A       N/A

     FCOS (0.0)   N/A    N/A    107     178       740       N/A       N/A

     FCOS (1.0)   N/A    N/A    523    1005      4777       N/A       N/A

      FCOS (PI)   N/A    N/A    250     351      2557       N/A       N/A

     FCOS (LG2)   N/A    N/A    452     980      4176       N/A       N/A

     FCOS (L2T)   N/A    N/A    528    1012      3905       N/A       N/A

  FSINCOS (0.0)   N/A    N/A    169     239       714       N/A       N/A

  FSINCOS (1.0)   N/A    N/A    961    1850      6049       N/A       N/A

   FSINCOS (PI)   N/A    N/A    327     458      4091       N/A       N/A

  FSINCOS (LG2)   N/A    N/A    857    1535      5640       N/A       N/A

  FSINCOS (L2T)   N/A    N/A    906    1578      5405       N/A       N/A

    FPTAN (0.0)    41     58     58     103       752      8381      2324

    FPTAN (1.0)   581    582    655    1211      6366     10817     29824

     FPTAN (PI)   606    587    267     332      4388     12410      2300

    FPTAN (LG2)   516    513    411     903      5939     12502     26770

    FPTAN (L2T)   576    586    455     975      5723     12483      2301

   FPATAN (0.0)    41     55    138     223       616      1208     10578

   FPATAN (1.0)   736    736    121     200      1426     13446     34208

    FPATAN (PI)   206    207    576    1128      2835     13305     46903

   FPATAN (LG2)   756    736    556    1087      2490     13319     41312

   FPATAN (L2T)   206    204    559    1130      2922     13364     50149

    F2XM1 (0.0)    16     56     59      99       563       723      1722

    F2XM1 (LN2)   631    624    388     919      4178     11070     33823

    F2XM1 (LG2)   611    585    386     903      4798     11116     32163

    FYL2X (1.0)    56     57     76     143       961      1214      4327

     FYL2X (PI)   946    961    463    1032      8987     12858     40148

    FYL2X (LG2)  1081   1038    471    1060      8933     12748     46821

    FYL2X (L2T)   926    886    508    1114      8982     12712     38986

  FYL2XP1 (LG2)  1026   1037    564    1199     10485     11867     44708

Clock-cycle timings for floating-point operations on Weitek coprocessors

------------------------------------------------------------------------

The Weitek 3167 and 4167 coprocessors only implement the basic arithmetic

functions (add, subtract, multiply, divide, square root) in hardware;

transcendental functions are implemented by means of a software library

supplied by Weitek which uses the basic hardware instructions to approximate

the transcendental functions (using polynomial and rational approximations).

The clock cycle timings for the transcendental functions are average values,

since execution time can differ with the value of argument. The speed of

transcendental functions for the 4167 is estimated based on the numbers in

[31,33], from which this timing information has been extracted.

                  Single-precision         Double-precision

                  3167       4167          3167        4167

         ABS         3          2             3           2

         NEG         6          2             6           2

         ADD         6          2             6           2

         SUB         6          2             6           2

         SUBR        6          2             6           2

         MUL         6          2            10           3

         DIVR       38         17            66          31

         SQRT       60         17           118          31

         SIN       146        ~50           292        ~100

         COS       140        ~50           285        ~100

         TAN       188        ~60           340        ~110

         EXP       179        ~60           401        ~130

         LOG       171        ~60           365        ~120

         F->ASCII 1000        N/A          1700         N/A  //

         ASCII->F 1100        N/A          1800         N/A  //

         // rough average of the timings given for different numeric

            formats by Weitek. Note that these conversions routines

            do much more work than the FBLD and FBSTP instructions

            provided by the 80x87 coprocessors. FBLD and FBSTP are

            useful for conversion routines but quite a bit of additional

            code is need for this purpose.

=============================================================================

Accuracy of calculations performed by a coprocessor / The IEEETEST program

=============================================================================

Among the 80x87 coprocessors, the IEEE-754 Standard for Binary Floating-Point

Arithmetic [10,11] was first fully implemented by Intel's 387 coprocessor [17].

Among other things, this means that the add, subtract, multiply, divide,

remainder, and square root operations always deliver the 'exact' result. By

'exact', the standard means that the coprocessor always delivers the machine

number closest to the real result, which may not always be representable

exactly in the available numeric format. The 80387 implements the single,

double, and double extended formats as specified in the IEEE standard, as

well as all functions required by it [17].

Note that earlier Intel coprocessors (the 8087 and the 80287) comply with a

draft version of the standard that differs from the final version. These

chips were developed before IEEE-754 was finally accepted in 1985. As with

the 80387, the basic arithmetic in the 8087 and the 80287 is 'exact' in the

sense that the computed result is always the machine number closest to the

real result. However, there are some differences regarding certain operands

like infinities, and some operations like the remainder are defined

differently than in the final version of the standard.

Some new instructions were introduced with the 80387, most notably the FSIN

and FCOS operations. The argument range for some transcendental function has

also been extended [17]. Note that the IEEE-754 standard says nothing about

the quality of the implementation of transcendental functions like sin, cos,

tan, arctan, log. Intel uses a modified CORDIC [18,19] technique to compute

the transcendental functions; Intel claims that maximum error in the 8087,

80287, and 80387 for all transcendental functions does not exceed two bits in

the mantissa of the double extended format, which features 64 mantissa bits

for an overall accuracy of approximately 19 decimal places [22,23]. This

claim has been independently verified by a competing vendor [13]. This means

that at least 62 of the 64 mantissa bits returned as a result by one of the

transcendental function instructions are guaranteed to be correct.

The Weitek Abacus 3167 and 4167 coprocessors are 'mostly compatible' with

IEEE-754 [31,32,33]. They support the single-precision and double precision

numeric formats described in the standard, as well as the four rounding modes

required by it. However, due to Weitek's desire for extremely high-speed

operation, some of the finer points of IEEE-754 have not been implemented.

One of the most notable omissions is the missing support for denormal

numbers; denormals are always flushed to zero on Weitek chips.

The 387 clone manufacturers all claim 100% compatibility with Intel's 80387,

so one would reasonably expect the same accuracy from their chips as from

Intel's. For example, on the packaging of the IIT 3C87 it states that "...the

requirements of ANSI/IEEE standards are fulfilled and exceeded". Cyrix states

that their 83D87 complies fully with the IEEE-754 standard [12], and in fact

delivers with their coprocessors diagnostic software that includes the

program IEEETEST. This program is based on the IEEE test vectors from the PhD

thesis of Dr. Jerome T. Coonen [9]. A test using the IEEE test vectors has

also been included into the RUNDIAG program on the Intel RapidCAD diagnostic

disk. Rather than performing random tests, the test vectors check specific

cases that may be hard to get right. Each test vector specifies the operation

to be performed, the operands, precision and rounding mode to be used, and

the result (including flags set) to be expected according to the IEEE-754

standard.

I ran IEEETEST on all the available coprocessors/FPUs. The Intel 486, Intel

RapidCAD, Intel 387, Intel 387DX, Cyrix 83D87, and the Cyrix 387+ passed with

no errors. The ULSI 83C87 showed some minor flaws in the FCOM, FDIV, FMUL,

and FSCALE operations, getting flag errors in about 1% of the tested cases,

but no computational errors. The newer version ULSI DX/DLC had mismatches for

the FDIV, FMUL, and FSCALE instructions, all of which where flag errors.

For the IIT 3C87, the IEEETEST program showed flag *and* some computational

errors (that is, wrong results) for all tested operations except FXTRACT

and FCHS. The Intel 8087 and 80287 show numerous errors, but this it not

surprising, since they do not comply with IEEE-754 but with an earlier draft

of that standard, so they do some things differently than required by the

final version of the standard. In particular the Intel 8087/80287 do not

feature the IEEE-754 compliant comparison (FUCOM) and remainder (FPREM1)

instructions available on the Intel 80387 and newer coprocessors, so IEEETEST

uses the non-compliant FCOM and FPREM instructions on these processors. Lack

of an IEEE-754 compliant comparison instruction also causes a good deal of

the errors in the 'Next After' test. Since IEEETEST is written in Turbo

Pascal, it was recompiled with the $E+ switch to enable use of the coprocessor

emulator built into the TP 6.0 library. Using the emulator, IEEETEST aborted

in the following tests with a division by zero error: 'Comparison', 'Division',

'Next After'. These tests were removed from the suite and the remaining

tests were performed. The public domain emulator EM87 could be tested, but

hung in the last test which checks the implementation of the remainder

operation. This problem occurred because EM87 incorrectly identifies itself

as an 387 type coprocessor when run on an 80386. This causes the 387 specific

FUCOM instruction to be used in the 'Comparison' and 'Next After' tests and

the FPREM1 instruction to be used in the 'Remainder' test. Apparently EM87

is not able to emulate these instructions and therefore crashes upon trying

to execute them. It is interesting to note how the error profile of EM87

matches exactly that of the Intel 80287, so it can be assumed that EM87 is

a very good emulation of the 80287 when run on the 80286. The Franke387 V2.4

emulator hangs in the following test performed by IEEETEST: 'Division',

'Multiplication', 'Scalb', 'Remainder'. The cause for these failures is

unknown.

This explanatory text is printed at the start of the IEEETEST program:

     JT Coonen's 1984 UC Berkeley Ph.D. thesis centers around his activities

     as a member of the floating-point working group that defined the IEEE

     754-1985 Standard for Binary Floating-Point Arithmetic. Appendix C of

     his thesis presents FPTEST, a Pascal program written by J Thomas and JT

     Coonen. IEEETEST is a port of FPTEST and runs on PCs whose math

     coprocessor accepts 80387-compatible floating-point instructions.

     IEEETEST reads test vectors from the file TESTVECS and compares the

     answer returned by the math coprocessor with the answer listed in the

     test vector. If these answers differ an 'F' is displayed, otherwise a

     '.'is displayed. Answers can differ due to two types of failures:

     numeric failures or flag failures. Numeric failures occur when the

     computed answer has the wrong value. Flag failures occur when the status

     (invalid operation, divide by zero, underflow, overflow, inexact) is

     incorrectly identified.

     TESTVECS is the concatenation of unmodified versions of all the test

     vectors distributed by UC Berkeley. The test data base is copyrighted by

     UC Berkeley (1985) and is being distributed with their permission.

     FPTEST and the test data base can be obtained by asking for 'IEEE-754

     Test Vector' from UC Berkeley, Electrical Engineering and Computer

     Science, Industrial Liaison Program, 479 Corey Hall, Berkeley, CA, 94720

     (415)643-6687.

     The initial version of this test data base for the proposed IEEE 754

     binary floating-point standard (draft 8.0) was developed for Zilog, Inc.

     and was donated to the floating-point working group for dissemination.

     Errors in or additions to the distributed data base should be reported

     to the agency of distribution, with copies to Zilog, Inc., 1315 Dell

     Avenue, Campbell, CA, 95008.

IEEETEST output for Intel 80387, Intel 387DX (manufactured 91/49), Intel 486,

C&T 38700 (manufactured 92/19), Cyrix 83D87, Cyrix 387+ (manufactured 92/11),

Intel RapidCAD (manufactured 92/05), and Intel Pentium:

----------------------------------------------------------------------------

     IEEE-754 Test Vector  Precisions: S=Single D=Double E=Double Extended

                           |     TESTS     | numeric TYPE OF FAILURE flag

            Operation Code | Passed Failed |    S    D    E |   S    D    E

     ----------------------------------------------------------------------

       Absolute Value    A |    216      0 |    0    0    0 |   0    0    0

             Addition    + |   3528      0 |    0    0    0 |   0    0    0

           Comparison    C |   4320      0 |    0    0    0 |   0    0    0

            Copy Sign    @ |   1488      0 |    0    0    0 |   0    0    0

             Division    / |   4311      0 |    0    0    0 |   0    0    0

        Fraction Part    F |    624      0 |    0    0    0 |   0    0    0

                 Logb    L |    960      0 |    0    0    0 |   0    0    0

       Multiplication    * |   3978      0 |    0    0    0 |   0    0    0

             Negation    - |    216      0 |    0    0    0 |   0    0    0

           Next After    N |   2832      0 |    0    0    0 |   0    0    0

     Round to Integer    I |    558      0 |    0    0    0 |   0    0    0

                Scalb    S |    948      0 |    0    0    0 |   0    0    0

          Square Root    V |    744      0 |    0    0    0 |   0    0    0

          Subtraction    - |   3528      0 |    0    0    0 |   0    0    0

            Remainder    % |   2984      0 |    0    0    0 |   0    0    0

                    Totals |  31235      0 |

IEEETEST output for ULSI 83C87 (manufactured 91/48):

----------------------------------------------------

     IEEE-754 Test Vector  Precisions: S=Single D=Double E=Double Extended

                           |     TESTS     | numeric TYPE OF FAILURE flag

            Operation Code | Passed Failed |    S    D    E |   S    D    E

     ----------------------------------------------------------------------

       Absolute Value    A |    216      0 |    0    0    0 |   0    0    0

             Addition    + |   3528      0 |    0    0    0 |   0    0    0

           Comparison    C |   4312      8 |    0    0    0 |   0    0    8

            Copy Sign    @ |   1488      0 |    0    0    0 |   0    0    0

             Division    / |   4250     61 |    0    0    0 |  28   28    5

        Fraction Part    F |    624      0 |    0    0    0 |   0    0    0

                 Logb    L |    960      0 |    0    0    0 |   0    0    0

       Multiplication    * |   3936     42 |    0    0    0 |  19   19    4

             Negation    - |    216      0 |    0    0    0 |   0    0    0

           Next After    N |   2828      4 |    0    0    0 |   0    0    4

     Round to Integer    I |    558      0 |    0    0    0 |   0    0    0

                Scalb    S |    930     18 |    0    0    0 |   6    6    6

          Square Root    V |    744      0 |    0    0    0 |   0    0    0

          Subtraction    - |   3528      0 |    0    0    0 |   0    0    0

            Remainder    % |   2984      0 |    0    0    0 |   0    0    0

                    Totals |  31102    133 |

IEEETEST output for ULSI 83S87 (manufactured 92/17) (data kindly supplied

by Bengt Ask, f89ba@efd.lth.se) and for ULSI DX/DLC (manufactured 94/15):

-------------------------------------------------------------------------

     IEEE-754 Test Vector  Precisions: S=Single D=Double E=Double Extended

                           |     TESTS     | numeric TYPE OF FAILURE flag

            Operation Code | Passed Failed |    S    D    E |   S    D    E

     ----------------------------------------------------------------------

       Absolute Value    A |    216      0 |    0    0    0 |   0    0    0

             Addition    + |   3528      0 |    0    0    0 |   0    0    0

           Comparison    C |   4320      0 |    0    0    0 |   0    0    0

            Copy Sign    @ |   1488      0 |    0    0    0 |   0    0    0

             Division    / |   4296     15 |    0    0    0 |   5    5    5

        Fraction Part    F |    624      0 |    0    0    0 |   0    0    0

                 Logb    L |    960      0 |    0    0    0 |   0    0    0

       Multiplication    * |   3966     12 |    0    0    0 |   4    4    4

             Negation    - |    216      0 |    0    0    0 |   0    0    0

           Next After    N |   2828      4 |    0    0    0 |   0    0    4

     Round to Integer    I |    558      0 |    0    0    0 |   0    0    0

                Scalb    S |    930     18 |    0    0    0 |   6    6    6

          Square Root    V |    744      0 |    0    0    0 |   0    0    0

          Subtraction    - |   3528      0 |    0    0    0 |   0    0    0

            Remainder    % |   2984      0 |    0    0    0 |   0    0    0

                    Totals |  31102     45 |

IEEETEST output for IIT 3C87 (manufactured 92/20):

--------------------------------------------------

     IEEE-754 Test Vector  Precisions: S=Single D=Double E=Double Extended

                           |     TESTS     | numeric TYPE OF FAILURE flag

            Operation Code | Passed Failed |    S    D    E |   S    D    E

     ----------------------------------------------------------------------

       Absolute Value    A |    200     16 |    0    0   16 |   0    0    0

             Addition    + |   3336    192 |    0    0  128 |   0    0   96

           Comparison    C |   4224     96 |    0    0   96 |   0    0    0

            Copy Sign    @ |   1488      0 |    0    0    0 |   0    0    0

             Division    / |   4159    152 |    0    0  124 |   0    0  116

        Fraction Part    F |    600     24 |    0    0   24 |   0    0   24

                 Logb    L |    960      0 |    0    0    0 |   0    0    0

       Multiplication    * |   3702    276 |    0    0  248 |   0    0  100

             Negation    - |    200     16 |    0    0   16 |   0    0    0

           Next After    N |   2248    584 |    0    0  584 |   0    0  168

     Round to Integer    I |    542     16 |    0    0    4 |   0    0   16

                Scalb    S |    874     74 |    5    5   44 |   8    8   20

          Square Root    V |    688     56 |    0    0   56 |   0    0   56

          Subtraction    - |   3336    192 |    0    0  128 |   0    0   96

            Remainder    % |   2844    140 |    0    0  140 |   0    0  116

                    Totals |  29401   1834 |

IEEETEST output for Intel 80287 run with a 80386 CPU and Intel 8087:

--------------------------------------------------------------------

     IEEE-754 Test Vector  Precisions: S=Single D=Double E=Double Extended

                           |     TESTS     | numeric TYPE OF FAILURE flag

            Operation Code | Passed Failed |    S    D    E |   S    D    E

     ----------------------------------------------------------------------

       Absolute Value    A |    216      0 |    0    0    0 |   0    0    0

             Addition    + |   2886    642 |   16   16  112 | 174  174  174

           Comparison    C |   3612    708 |  136  136  136 | 228  228  228

            Copy Sign    @ |   1488      0 |    0    0    0 |   0    0    0

             Division    / |   3777    534 |   18   18   37 | 169  169  165

        Fraction Part    F |    552     72 |   24   24   24 |  24   24   24

                 Logb    L |    900     60 |   12   12   12 |  20   20   20

       Multiplication    * |   2944   1034 |  105  105  197 | 303  303  231

             Negation    - |    216      0 |    0    0    0 |   0    0    0

           Next After    N |    516   2316 |  168  168  332 | 764  764  764

     Round to Integer    I |    546     12 |    0    0    0 |   4    4    4

                Scalb    S |    663    285 |   45   43   26 | 102   98   46

          Square Root    V |    720     24 |    4    4    4 |   8    8    8

          Subtraction    - |   2886    642 |   16   16  112 | 174  174  174

            Remainder    % |   1490   1494 |  432  432  288 | 342  342  230

                    Totals |  23412   7823 |

IEEETEST output for EM87 coprocessor emulator run on an Intel 386 CPU:

----------------------------------------------------------------------

     IEEE-754 Test Vector  Precisions: S=Single D=Double E=Double Extended

                           |     TESTS     | numeric TYPE OF FAILURE flag

            Operation Code | Passed Failed |    S    D    E |   S    D    E

     ----------------------------------------------------------------------

       Absolute Value    A |    216      0 |    0    0    0 |   0    0    0

             Addition    + |   2886    642 |   16   16  112 | 174  174  174

           Comparison    C |      0   4320 | 1324 1324 1324 |1332 1332 1332

            Copy Sign    @ |   1488      0 |    0    0    0 |   0    0    0

             Division    / |   3777    534 |   18   18   37 | 169  169  165

        Fraction Part    F |    552     72 |   24   24   24 |  24   24   24

                 Logb    L |    900     60 |   12   12   12 |  20   20   20

       Multiplication    * |   2944   1034 |  105  105  197 | 303  303  231

             Negation    - |    216      0 |    0    0    0 |   0    0    0

           Next After    N |    348   2484 |  768  768  768 | 504  504  526

     Round to Integer    I |    546     12 |    0    0    0 |   4    4    4

                Scalb    S |    663    285 |   45   43   26 | 102   98   46

          Square Root    V |    720     24 |    4    4    4 |   8    8    8

          Subtraction    - |   2886    642 |   16   16  112 | 174  174  174

            Remainder    % |   ######## not run since machine hangs #######

IEEETEST output for Franke387 2.4 coprocessor emulator run on an Intel 386:

---------------------------------------------------------------------------

     IEEE-754 Test Vector  Precisions: S=Single D=Double E=Double Extended

                           |     TESTS     | numeric TYPE OF FAILURE flag

            Operation Code | Passed Failed |    S    D    E |   S    D    E

     ----------------------------------------------------------------------

       Absolute Value    A |    152     64 |    0    0    8 |  24   24    8

             Addition    + |   1587   1941 |  178  178  722 | 508  508  616

           Comparison    C |   3696    624 |  208  208  208 |   4    4  108

            Copy Sign    @ |   1200    288 |    0    0    0 | 144  144    0

             Division    / |   ######## not run since machine hangs #######

        Fraction Part    F |    624      0 |    0    0    0 |   0    0    0

                 Logb    L |    908     52 |    0    0   16 |  16   16    4

       Multiplication    * |   ######## not run since machine hangs #######

             Negation    - |    152     64 |    0    0    8 |  24   24    8

           Next After    N |   1404   1420 |  404  404  596 |  80   80  172

     Round to Integer    I |    514     44 |    4    4   20 |   8    8   16

                Scalb    S |   ######## not run since machine hangs #######

          Square Root    V |    569    175 |   14   31   54 |  28   48   72

          Subtraction    - |   1827   1701 |   98   98  642 | 452  452  576

            Remainder    % |   ######## not run since machine hangs #######

IEEETEST output for Q387 3.63 coprocessor emulator run on an Intel 386:

-----------------------------------------------------------------------

     IEEE-754 Test Vector  Precisions: S=Single D=Double E=Double Extended

                           |     TESTS     | numeric TYPE OF FAILURE flag

            Operation Code | Passed Failed |    S    D    E |   S    D    E

     ----------------------------------------------------------------------

       Absolute Value    A |    152     64 |    0    0   16 |  24   24    0

             Addition    + |   2320   1208 |  171  173  332 | 364  364  196

           Comparison    C |   3924    396 |    0    0   96 | 100  100  100

            Copy Sign    @ |   1200    288 |   24   24    0 | 144  144    0

             Division    / |   3699    612 |   63  104  273 | 125  125  161

        Fraction Part    F |    600     24 |    0    0   24 |   0    0   24

                 Logb    L |    924     36 |    4    4    4 |   8    8    8

       Multiplication    * |   2747   1231 |  158  169  376 | 350  376  246

             Negation    - |    152     64 |    8    8   16 |  24   24    0

           Next After    N |   1220   1612 |  364  364  584 | 108  108  268

     Round to Integer    I |    344    214 |   50   50   54 |  48   72   88

                Scalb    S |    452    496 |   80   76   97 | 168  160   96

          Square Root    V |    199    545 |  120  161  143 | 164  164  164

          Subtraction    - |   2320   1208 |  171  173  332 | 364  364  196

            Remainder    % |   2028    956 |  276  276  276 | 160  164  136

                    Totals |  22281   8954 |

IEEETEST output for TP 6.0 coprocessor emulator:

------------------------------------------------

     IEEE-754 Test Vector  Precisions: S=Single D=Double E=Double Extended

                           |     TESTS     | numeric TYPE OF FAILURE flag

            Operation Code | Passed Failed |    S    D    E |   S    D    E

     ----------------------------------------------------------------------

       Absolute Value    A |    168     48 |   16   16   16 |  16    8    0

             Addition    + |   1877   1651 |  294  290  336 | 496  456  416

           Comparison    C |   ## not run - program aborts with div-by-0 ##

            Copy Sign    @ |   1392     96 |   48   48    0 |  48    0    0

             Division    / |   ## not run - program aborts with div-by-0 ##

        Fraction Part    F |    588     36 |   12    0   24 |   0    0    0

                 Logb    L |    888     72 |   24   24   24 |  12   12   12

       Multiplication    * |   2148   1830 |  332  310  528 | 520  360  352

             Negation    - |    160     48 |   16   16   16 |  16    8    0

           Next After    N |   ## not run - program aborts with div-by-0 ##

     Round to Integer    I |    318    240 |    0    0    4 |  80   80   80

                Scalb    S |    564    384 |  108  100   76 | 112   88   56

          Square Root    V |    180    564 |  143  157  169 |  72   72  128

          Subtraction    - |   1877   1651 |  294  290  336 | 496  456  416

            Remainder    % |   1072   1912 |  652  672  524 | 336  288  216

Additional accuracy and compatibility tests

-------------------------------------------

To complement the checks done by IEEETEST, I also wrote the short programs

DENORMTS, RCTRL, PCTRL in Turbo Pascal 6.0 that test the following

coprocessor functions:

    1. support for denormals in all precisions (single, double, extended)

    2. support for the four IEEE rounding modes (up, down, nearest, chop)

    3. support for precision control

Note that passing all tests is required for IEEE conformance, as well as 100%

compatibility with Intel's coprocessors. Precision control forces the results

of the FADD, FSUB, FMUL, FDIV, and FSQRT instruction to be rounded to the

specified precision (single, double, double extended). This feature is

provided to obtain compatibility with certain programming languages [17]. By

specifying lower precision, one effectively nullifies the advantages of

extended precision intermediate results.

The IEEE-754 standard for floating-point arithmetic demands that processors

and floating-point packages that can not store the result of operations

*directly* to single and double precision location must provide precision

control. The programs that test precision control and rounding control are

designed to return a different result for each of the modes for the same

sequence of operation.

The source code of the programs can be found in appendix A. The Intel 8087

and 80287 were not tested with DENORMTS since Turbo Pascal does not support

extended precision denormals on 8087/80287 processors, so the denormal test

fails anyway. (The 8087 and 287 pass the RCTRL and PCTRL tests without error,

however).

Test Results for the Intel 387, Intel 387DX, Intel 486, Intel RapidCAD,

Cyrix 83D87, Cyrix 387+, C&T 38700, and the EM87 emulator (on an 80386 system):

-------------------------------------------------------------------------------

         Precision Control           SINGLE   1.13311278820037842E+0000

                                     DOUBLE   1.23456789006442125E+0000

                                     EXTENDED 1.23456789012337585E+0000

         Rounding Control            NEAREST -1.23427629010100635E+0100

                                     DOWN    -1.23427623555772409E+0100

                                     UP      -1.23457760966801097E+0100

                                     CHOP    -1.23397493540770643E+0100

         Denormal support

         SINGLE denormals supported

         SINGLE denormal prints as:    4.60943116855005E-0041

         Denormal should be printed as 4.60943...E-0041

         DOUBLE denormals supported

         DOUBLE denormal prints as:    8.75000000000016E-0311

         Denormal should be printed as 8.75...E-0311

         EXTENDED denormals supported

         EXTENDED denormal prints as:  1.31640625000000E-4934

         Denormal should be printed as 1.3164...E-4934

Results for the ULSI 83C87:

---------------------------

         Precision Control           SINGLE   1.23456789012337585E+0000

                                     DOUBLE   1.23456789012337585E+0000

                                     EXTENDED 1.23456789012337585E+0000

         Rounding Control            NEAREST -1.23427629010100635E+0100

                                     DOWN    -1.23427623555772409E+0100

                                     UP      -1.23457760966801097E+0100

                                     CHOP    -1.23397493540770643E+0100

         Denormal support

         SINGLE denormals supported

         SINGLE denormal prints as:    4.60943116855005E-0041

         Denormal should be printed as 4.60943...E-0041

         DOUBLE denormals supported

         DOUBLE denormal prints as:    8.75000000000016E-0311

         Denormal should be printed as 8.75...E-0311

         EXTENDED denormals supported

         EXTENDED denormal prints as:  1.31640625000000E-4934

         Denormal should be printed as 1.3164...E-4934

Results for the IIT 3C87:

-------------------------

         Precision Control           SINGLE   1.13311278820037842E+0000

                                     DOUBLE   1.23456789006442125E+0000

                                     EXTENDED 1.23456789012337585E+0000

         Rounding Control            NEAREST -1.23427629010100635E+0100

                                     DOWN    -1.23427623555772409E+0100

                                     UP      -1.23457760966801097E+0100

                                     CHOP    -1.23397493540770643E+0100

         Denormal support

         SINGLE denormals supported

         SINGLE denormal prints as:    4.60943116855005E-0041

         Denormal should be printed as 4.60943...E-0041

         DOUBLE denormals supported

         DOUBLE denormal prints as:    8.75000000000016E-0311

         Denormal should be printed as 8.75...E-0311

         EXTENDED denormals not supported

Results for the Turbo Pascal 6.0 coprocessor emulator:

------------------------------------------------------

         Precision Control           SINGLE   1.23456789012351396E+0000

                                     DOUBLE   1.23456789012351396E+0000

                                     EXTENDED 1.23456789012351396E+0000

         Rounding Control            NEAREST -1.23457766383395931E+0100

                                     DOWN    -1.23457766383395931E+0100

                                     UP      -1.23457766383395931E+0100

                                     CHOP    -1.23457766383395931E+0100

         Denormal support

         SINGLE denormals not supported

         DOUBLE denormals not supported

         EXTENDED denormals not supported

Results for the Q387 3.63 coprocessor emulator:

-----------------------------------------------

         Precision Control           SINGLE   1.23456789012337585E+0000

                                     DOUBLE   1.23456789012337585E+0000

                                     EXTENDED 1.23456789012337585E+0000

         Rounding Control            NEAREST -1.23427629010100635E+0100

                                     DOWN    -1.23427629010100635E+0100

                                     UP      -1.23427629010100635E+0100

                                     CHOP    -1.23427629010100635E+0100

         Denormal support

         SINGLE denormals supported

         SINGLE denormal prints as:    4.60929103870362E-0041

         Denormal should be printed as 4.60943...E-0041

         DOUBLE denormals supported

         DOUBLE denormal prints as:    8.74999999999966E-0311

         Denormal should be printed as 8.75...E-0311

         EXTENDED denormals not supported

The test results show that the IIT 3C87 does not conform to the IEEE-754

floating-point standard in that it does not support denormals in double

extended precision. The ULSI 83C87 does not conform to that standard in that

it does not support precision control, but uses double extended precision

for all operations. The TP 6.0 emulator supports neither precision control,

rounding control nor support for any denormals, as does the Q387 3.63

emulator. In addition, the basic arithmetic operations of the TP 6.0 do not

seem to conform to the IEEE standard as the results of the test programs

differ from that of any result computed by a coprocessor for any mode. The

results for the Q387 3.63 emulator in the precision control test are equal

to those of a math coprocessor in EXTENDED precision mode. The results for

the rounding control test are equal to those of a math coprocessor in

"round to nearest" mode. The denormal support test indicates that Q387 has

support for single and double precision denormals, but not for double

extended precision denormals. However, the denormal results differ from

the results of math coprocessors that support denormals. The test results

of the three programs indicate that Q387 3.63 correctly implements double

extended precision arithmetic, except for denormals. Q387 has obviously

been improved over the previously tested version 3.0, in which the results

from the PCTRL and RCTRL programs would not match that of any coprocessor.

Also the numbers of failures on the IEEETEST program has dropped significantly

from version 3.0 (20743 failures) to version 3.63 (8954 failures).

================================================

Accuracy of transcendental function calculations

================================================

With regard to the accuracy of transcendental functions, Cyrix claims that

the relative error of the transcendental functions on its 83D87 coprocessor

never exceeds 0.5 ULP of the double extended format [13] (ULP = Unit in the

Last Place, numeric weight of the least significant mantissa bit). This means

that the maximum relative error is below 2**-64, while Intel's published

error limit for the 80387 is 2**-62. While Intel uses a modified CORDIC

algorithm [18,19] to compute the transcendental functions, Cyrix uses

rational approximations that utilize their chip's very fast array multiplier.

(For an explanation why this approach is superior to CORDIC with today's

technology, see [61].) Also, Cyrix uses an internal 75 bit data path for the

mantissa [15], so intermediate computations in the generation of

transcendental function values will enjoy some additional accuracy over the

64 bits provided by the double extended format. Using 75 mantissa bits also

provides an advantage over other coprocessors like the Intel 387DX and ULSI

83C87 which use only a 68 bit mantissa data path [58,59].

Note that a maximum relative error of 0.5 ULP for the Cyrix coprocessor does

not mean that it returns the 'exact' result (machine number closest to

infinitely precise result) all the time. Consider the case where the

infinitely precise result of a transcendental function falls nearly halfway

between two machine numbers. A relative error of 0.5 ULP can cause the result

to be either of the numbers after rounding, depending on the direction of the

error. But the 83D87 should deliver results that never differ from the

'exact' result by more than one ULP. Also note that the claim of relative

error being below 0.5 ULPs is slightly exaggerated; 0.6 ULPs would be a more

realistic error limit. Imagine that the infinitely precise result for some

argument to a transcendental was xxx..xxx1001... (where the xxx...xxx

represent the first 64 bits of the result), but that the coprocessor computes

the result as xxx..xxx0111 and then round this down to xxx..xxx0000. Then the

relative error is (1001b-0b)/1000b = 0.5625 ULPs.

I tested some of the transcendental functions of the Cyrix 387+ and found the

relative error to be always below 0.6 ULPs. Cyrix also claims that its

transcendental functions satisfy the monotonicity criterion [13], a claim not

made by any of the competitors, which does not mean that the transcendental

functions on the other 387-compatibles may not be monotonic, too.

Monotonicity means that for all x1 > x2, it always follows that f(x1) >=

f(x2) for an increasing function like sin on [0..pi/4]. Likewise, for a

decreasing function like cos on [0..pi/4], for all x1 > x2, it follows that

f(x1) <= f(x2).

As previously noted, the Weitek Abacus 3167 and 4167 coprocessors implement

only the basic arithmetic operations (add, subtract, negate, multiply,

divide, square root) in hardware. Transcendental functions are performed via

a software library provided by Weitek. For these library functions Weitek

claims a maximum relative error of 5 ULPs [31,33]. This means that the last

three bits in the mantissa of a double-precision result can be wrong. Note

that the Intel 387 and compatible math coprocessors generate the

transcendental functions with a small relative error with regard to the

*extended double precision* format. Thus, when rounded to double-precision,

their function values are nearly always 'exact'. The problem of 'double

rounding' prevents them to be 'exact' in 100% of all cases. 387 type

coprocessors in general have superior accuracy when compared with Weitek's

coprocesssors.

The test diskette distributed with early versions of the Cyrix 83D87

contained a program (TRANCK) that checks the accuracy of the transcendental

functions in the coprocessor against a more precise software arithmetic [16].

I used this program to compare the accuracy of the transcendental functions

on those 287/387/486 coprocessors/FPUs available to me. As TRANCK will not

accept negative numbers as interval limits, I tested each function on an

interval along the positive x-axis. The functions tested were F2XM1 (2**x-1),

FSIN (sine), FCOS (cosine), FPTAN (tangent), FPATAN (arctangent), FYL2X (y *

log2 (x)), and FYL2XP1 (y * log2 (x+1)). These are all the transcendental

functions implemented on the 80387. Note that the square root (FSQRT) is

*not* a transcendental function. For each function, 100,000 arguments were

evaluated, with the arguments uniformly distributed within the interval

tested.

The EM87 emulator could not be checked with TRANCK, since the multiple

precision package in TRANCK would always return with an error message

immediately. However, the Franke387 emulator could be tested.

In the test results below, the following statistics are detailed:

       %wrong      is the percentage of results that differ from the 'exact'

                   result (infinitely precise result rounded to 64 bits)

       ULP_hi      is the number of results where the returned result was

                   greater than the 'exact' (correctly rounded) result by

                   one ULP (the numeric weight of the last mantissa bit,

                   2**-63 to 2**-64 depending of the size of the number).

       ULPs_hi     is the number of results where the returned result was

                   greater than the 'exact' result by two or more ULPs.

       ULP_lo      is the number of results where the returned result was

                   smaller than the 'exact' (correctly rounded) result by

                   one ULP (the numeric weight of the last mantissa bit,

                   2**-63 to 2**-64 depending of the size of the number).

       ULPs_lo     is the number of results where the returned result was

                   smaller than the 'exact' result by two or more ULPs.

       max ULP err is the maximum deviation of a returned result from the

                   'exact' answer expressed in ULPs.

Test results for accuracy of transcendental functions for double extended

precision as returned by the program TRANCK. 100,000 trials per function:

         Franke387 V2.4 emulator

                                                                    max

         funct. interval   %wrong ULP_hi ULPs_hi ULP_lo ULPs_lo ULP err

         SIN    0,pi/4      39.042  25301     708  13029       4       2

         COS    0,pi/4      75.714  49827   25887      0       0       3

         TAN    0,pi/4      76.976  14230   10029  24323   28394       9

         ATAN   0,1         55.826  26028    1529  24044    4225       4

         2XM1   0,0.5       96.717      0       0  47910   48807       5

         YL2XP1 0,sqrt(2)-1 93.007    578       9  27416   65004       8

         YL2X   0.1,10      62.252  16817    4712  37082    3641    2953

         Microsoft's coprocessor emulator

         (part of MS-C and MS-Fortran libraries)

                                                                     max

         funct. interval    %wrong ULP_hi ULPs_hi ULP_lo ULPs_lo ULP err

         SIN    0,pi/4         N/A    N/A     N/A    N/A     N/A     N/A

         COS    0,pi/4         N/A    N/A     N/A    N/A     N/A     N/A

         TAN    0,pi/4      40.828  27764    1520  11445      99       2

         ATAN   0,1         32.307  18893     485  12530     299       2

         2XM1   0,0.5       52.163   8585     189  37745    5644       3

         YL2XP1 0,sqrt(2)-1 88.801   4714     916  14239   68932      11

         YL2X   0.1,10      36.598  13813    3272  13866    5647      11

         INTEL 8087, 80287

                                                                     max

         funct. interval    %wrong ULP_hi ULPs_hi ULP_lo ULPs_lo ULP err

         SIN    0,pi/4         N/A    N/A     N/A    N/A     N/A     N/A

         COS    0,pi/4         N/A    N/A     N/A    N/A     N/A     N/A

         TAN    0,pi/4      37.001  18756     524  17405     316       2

         ATAN   0,1          9.666   6065       0   3601       0       1

         2XM1   0,0.5       19.920      0       0  19920       0       1

         YL2XP1 0,sqrt(2)-1  7.780    868       0   6912       0       1

         YL2X   0.1,10       1.287    723       0    564       0       1

         INTEL 80387

                                                                     max

         funct. interval    %wrong ULP_hi ULPs_hi ULP_lo ULPs_lo ULP err

         SIN    0,pi/4      28.872   2467       0  26392      13       2

         COS    0,pi/4      27.213  27169      35      9       0       2

         TAN    0,pi/4      10.532    441       0  10091       0       1

         ATAN   0,1          7.088   2386       0   4691       1       2

         2XM1   0,0.5       32.024      0       0  32024       0       1

         YL2XP1 0,sqrt(2)-1 22.611   3461       0  19150       0       1

         YL2X   0.1,10      13.020   6508       0   6512       0       1

         INTEL 387DX

                                                                     max

         funct. interval    %wrong ULP_hi ULPs_hi ULP_lo ULPs_lo ULP err

         SIN    0,pi/4      28.873   2467       0  26393      13       2

         COS    0,pi/4      27.121  27090      22      9       0       2

         TAN    0,pi/4      10.711    457       0  10254       0       1

         ATAN   0,1          7.088   2386       0   4691       1       2

         2XM1   0,0.5       32.024      0       0  32024       0       1

         YL2XP1 0,sqrt(2)-1 22.611   3461       0  19150       0       1

         YL2X   0.1,10      13.020   6508       0   6512       0       1

         ULSI 83C87

                                                                     max

         funct. interval    %wrong ULP_hi ULPs_hi ULP_lo ULPs_lo ULP err

         SIN    0,pi/4      35.530   4989       6  30238     297       2

         COS    0,pi/4      43.989  11193     675  31393     728       2

         TAN    0,pi/4      48.539  18880    1015  26349    2295       3

         ATAN   0,1         20.858     62       0  20796       0       1

         2XM1   0,0.5       21.257      4       0  21253       0       1

         YL2XP1 0,sqrt(2)-1 27.893   9446       0  18213     234       2

         YL2X   0.1,10      13.603   9816       0   3787       0       1

         ULSI DX/DLC

                                                                     max

         funct. interval    %wrong ULP_hi ULPs_hi ULP_lo ULPs_lo ULP err

         SIN    0,pi/4      42.691   1707       0  39972    1012       2

         COS    0,pi/4      43.989  11193     675  31393     728       2

         TAN    0,pi/4      48.479  18585     999  26565    2330       3

         ATAN   0,1         20.858     62       0  20796       0       1

         2XM1   0,0.5       21.257      4       0  21253       0       1

         YL2XP1 0,sqrt(2)-1 27.893   9446       0  18213     234       2

         YL2X   0.1,10      13.603   9816       0   3787       0       1

         IIT 3C87

                                                                     max

         funct. interval    %wrong ULP_hi ULPs_hi ULP_lo ULPs_lo ULP err

         SIN    0,pi/4      18.650  11171      0    7479       0       1

         COS    0,pi/4       7.700   3024      0    4676       0       1

         TAN    0,pi/4      20.973   9681      0   11291       1       2

         ATAN   0,1         19.280  13186      0    6094       0       1

         2XM1   0,0.5       25.660  17570      0    8090       0       1

         YL2XP1 0,sqrt(2)-1 45.830  23503   1896   19654     777       3

         YL2X   0.1,10      10.888   5638    357    4845      48       3

         C&T 38700DX

                                                                     max

         funct. interval    %wrong ULP_hi ULPs_hi ULP_lo ULPs_lo ULP err

         SIN    0,pi/4       1.821   1272      0     549       0       1

         COS    0,pi/4      23.358  12458      0   10901       0       1

         TAN    0,pi/4      17.178  10725      0    6453       0       1

         ATAN   0,1          9.359   7082      0    2277       0       1

         2XM1   0,0.5       15.188   3039      0   12149       0       1

         YL2XP1 0,sqrt(2)-1 19.497  12109      0    7388       0       1

         YL2X   0.1,10      46.868    261      0   46607       0       1

         CYRIX 83D87

                                                                     max

         funct. interval    %wrong ULP_hi ULPs_hi ULP_lo ULPs_lo ULP err

         SIN    0,pi/4       1.554   1015      0     539       0       1

         COS    0,pi/4       0.925    143      0     782       0       1

         TAN    0,pi/4       4.147    881      0    3266       0       1

         ATAN   0,1          0.656    229      0     427       0       1

         2XM1   0,0.5        2.628   1433      0    1194       0       1

         YL2XP1 0,sqrt(2)-1  3.242    825      0    2417       0       1

         YL2X   0.1,10       0.931    256      0     675       0       1

         CYRIX 387+

                                                                 max

         funct. interval    %wrong ULP_hi ULPs_hi ULP_lo ULPs_lo ULP err

         SIN    0,pi/4       1.486    864       0    622       0       1

         COS    0,pi/4       2.072     12       0   2060       0       1

         TAN    0,pi/4       0.602     63       0    539       0       1

         ATAN   0,1          0.384     12       0    372       0       1

         2XM1   0,0.5        1.985     27       0   1958       0       1

         YL2XP1 0,sqrt(2)-1  3.662   1705       0   1957       0       1

         YL2X   0.1,10       0.764    367       0    397       0       1

         INTEL RapidCAD, Intel 486

                                                                 max

         funct. interval    %wrong ULP_hi ULPs_hi ULP_lo ULPs_lo ULP err

         SIN    0,pi/4      16.991   1517       0  15474       0       1

         COS    0,pi/4       9.003   7603       0   1400       0       1

         TAN    0,pi/4      10.532    441       0  10091       0       1

         ATAN   0,1          7.078   2386       0   4691       1       2

         2XM1   0,0.5       32.025      0       0  32025       0       1

         YL2XP1 0,sqrt(2)-1 21.800    533       0  21267       0       1

         YL2X   0.1,10       3.894   1879       0   2015       0       1

         INTEL Pentium

                                                                 max

         funct. interval    %wrong ULP_hi ULPs_hi ULP_lo ULPs_lo ULP err

         SIN    0,pi/4       3.503   2937       0    567       0       1

         COS    0,pi/4       2.113   1737       0    376       0       1

         TAN    0,pi/4       5.030   2402       0   2628       0       1

         ATAN   0,1          3.088   1266       0   1822       0       1

         2XM1   0,0.5        7.092   1014       0   6078       0       1

         YL2XP1 0,sqrt(2)-1  8.895    417       0   8478       0       1

         YL2X   0.1,10       6.784     71       0   6713       0       1

Discussion of the transcendental function tests

-----------------------------------------------

The test results above indicate that all 80x87 compatibles do not exceed

Intel's stated error bound of 3 ULPs for the transcendental functions.

However, some coprocessors are more accurate than others. Rating the

coprocessors according to the accuracy of their transcendental functions

gives the following list (highest accuracy first): Cyrix 387+, Cyrix 83D87,

Intel Pentium, Intel 486, Intel RapidCAD, Intel 80287(!), C&T 38700DX,

Intel 387DX, Intel 80387, IIT 3C87, ULSI 83C87. The tests also show that

the problems with excessive inaccuracy of the transcendental functions in

early versions of the IIT coprocessors with errors of up to 8 ULPs [8] have

been corrected. (According to [56], certain problems with the FPATAN

instruction on the IIT 3C87 occurring under the UNIX version of AutoCAD

were corrected in June, 1990.)

Considering the coprocessor emulators, the Franke387 has acceptable accuracy

for the FSIN, FCOS, and FPATAN instructions, taking into consideration that

according to its documentation, Franke387 uses only 64 bits of precision for

the intermediate results, while coprocessors typically use 68 bits and more.

However, the larger error in the FPTAN, F2XM1, FYL2XP1, and especially the

FYL2X operations show that the emulator doesn't use state-of-the-art

algorithms, which ensure an error of only a very few ULPs even if no extra

precise intermediate results are available. Microsoft's emulator, meanwhile,

provides transcendental functions with rather good accuracy, except for the

logarithmic operations, which contain some minor flaws.

======================================================

Intel 387DX compatibility testing / The SMDIAG program

======================================================

Chips and Technologies has included the program SMDIAG on the V1.0 diagnostic

disk distributed with its SuperMATH 38700DX coprocessor. Its stated purpose

is to test the compatibility of the computational results and flag settings

returned by the C&T coprocessor with the Intel 387DX. However, the tests for

the transcendental functions seem to have been tweaked to let the C&T 38700DX

pass, while coprocessors like the Intel RapidCAD and the Cyrix 83D87 fail.

Also, SMDIAG shows failure in the FSCALE test for the Intel RapidCAD, Cyrix

83D87, Cyrix 387+, and ULSI 83C87, even though they return the correct result

according to Intel's documentation for the Intel 387DX (Intel's second

generation 387), which is indeed returned by the 387DX. (SMDIAG apparently

expects the result returned by the original Intel 80387.)

Note that chip manufacturers often do quite bug fixes, so it wouldn't be

surprising if somebody else, using different runs of the same manufacturer's

chip, came up with different results than the ones below. The Intel 387 alone

seems to have been produced in four different versions that can be told apart

by software, and Cyrix, ULSI, and IIT have manufactured at least two versions

each of their coprocessors. (The coprocessors I tested have the following

manufacturing dates stamped on them. Intel 387DX: 91/49, C&T 38700DX: 92/19,

Cyrix 387+: 92/11, Intel RapidCAD: 92/05, ULSI 83C87: 91/48, ULSI DX/DLC:

94/15, IIT 3C87: 92/20.)

    Results of running the SMDIAG program on 387-compatible coprocessors

    (p = passed, f = failed)

                  Intel Intel Intel Cyrix Cyrix  IIT ULSI  ULSI   C&T

    Test       RapidCAD 387DX 80387  387+ 83D87 3C87 83C87 DX/DLC 38700

    1  (fstore)      f     p     p     p     f     f     f     f     p ##,%%

    2  (fiall)       p     p     p     p     p     p     f     f     p

    3  (faddsub)     p     p     p     p     p     p     p     p     p

    4  (faddsub_nr)  p     p     p     p     f     f     f     f     p %%

    5  (faddsub_cp)  p     p     p     p     f     f     f     f     p %%

    6  (faddsub_dn)  p     p     p     p     f     f     f     f     p %%

    7  (faddsub_up)  p     p     p     p     f     f     f     f     p %%,&&

    8  (fmul)        p     p     p     p     p     f     f     f     p

    9  (fdivn)       p     p     p     p     p     p     p     p     p

    10 (fdiv)        p     p     p     p     p     p     f     f     p

    11 (fxch)        p     p     p     p     p     p     p     p     p

    12 (fyl2x)       p     p     p     f     f     f     f     f     p ++

    13 (fyl2xp1)     f     p     p     f     f     f     f     f     p ++

    14 (fsqrt)       p     p     p     p     p     p     p     p     p

    15 (fsincos)     f     p     p     f     f     f     f     f     p ++

    16 (fptan)       p     p     p     f     p     f     f     f     p ++

    17 (fpatan)      p     p     p     f     f     f     f     f     p ++

    18 (f2xm1)       p     p     p     f     f     f     f     f     p ++

    19 (fscale)      f     f     p     f     f     f     f     f     p **

    20 (fcom1)       p     p     p     p     p     f     f     p     p

    21 (fprem)       p     p     p     p     p     p     p     p     p

    22 (misc1)       p     p     p     p     p     f     f     p     p

    23 (misc3)       p     p     p     p     p     p     p     p     p

    24 (misc4)       p     p     p     p     f     f     p     p     p %%

    failed modules:  4     1     0     7    12    16    17    15     0

    ## the failure of the Intel RapidCAD is caused by the fact that

       it stores the value of BCD INDEFINITE differently from the

       Intel 387DX. It uses FFFFC000000000000000, while the 387DX uses

       FFFF8000000000000000. However, both encodings are valid according

       to Intel's documentation, which defines the BCD INDEFINITE as

       FFFFUUUUUUUUUUUUUUUU, where U is undefined. So failure of the

       RapidCAD to deliver the same answer as the 387DX is not an

       "error", just a very slight incompatibility.

    ** the FSCALE errors reported for the Intel 387DX, Intel RapidCAD,

       Cyrix 83D87, Cyrix 387+, ULSI 83C87, and ULSI DX/DLC are due to

       a single 'wrong' result each returned by one of the FSCALE

       computations. SMDIAG expects the result returned by the first

       generation Intel 80387 (and, of course, the C&T 38700DX). However,

       this result is wrong according to Intel's documentation and the

       behavior was corrected in the second generation Intel 387DX.

       Therefore, the Intel RapidCAD, Cyrix 83D87, Cyrix 387+, ULSI

       83C87, and ULSI DX/DLC return the correct result compatible

       with the Intel 387DX.

    %% Failures reported for the Cyrix 83D87 are due to the fact that it

       converts pseudodenormals contained in its registers to normalized

       numbers upon storing them to memory with the FSTP TBYTE PTR

       instruction. Intel's processors store pseudodenormals without

       'normalizing' them. This is an incompatibility, but not an error,

       because both encodings will evaluate to the same value should

       they be reused in a calculation.

    && Two of the failures reported for the Cyrix 83D87 are actual

       errors where the Cyrix 83D87 fails to deliver the correct result.

       1) control word = 0A7F (closure=proj., round=up, precision=53bit)

          ST(0) = 0001 ABCEF9876542101

          ST(1) = 0001 800000000345FFF

          instruction: FSUBRP ST(1), ST

          result should be: 0000 2BCEF987650EC800, status word = 3A30

          83D87 returns:    0000 3BCEF987650EC000, status word = 3830

       2) control word = 0A7F (closure=proj., round=up, precision=53bit)

          ST(0) = 0001 ABCEF9876542101

          ST(1) = 0001 800000000000000

          instruction: FSUB ST, ST(1)

          result should be: 0000 2BCEF98765432800, status word = 3A30

          83D87 returns:    0000 3BCEF98765432000, status word = 3830

    ++ The failures for the test of transcendental functions are caused

       by the tested coprocessor returning results that differ from the

       ones returned by the Intel 387DX. On the Cyrix 83D87, Cyrix 387+,

       and Intel RapidCAD, this is simply due to the improved accuracy

       these coprocessors provide over the Intel 387DX. The failures of

       the IIT 3C87, ULSI 83C87, and ULSI DX/DLC are mainly due to the

       lesser accuracy in the transcendental functions of these

       coprocessors, but for the IIT 3C87 an additional source of

       failures is its inability to handle extended-precision denormals.

Another compatibility issue that has been discussed on Usenet is the behavior

of the math coprocessors under protected-mode operating systems. I have seen

postings claiming that coprocessors from ULSI, IIT, and Cyrix locked up the

machine when a protected mode operating system (several UNIX derivatives were

also mentioned) was run on them. However, there have also been reports that

several 486-based systems also have this problem, while others do not.

Therefore, I think at least some of these problems are caused by poor

motherboard design, especially wrong handling of error interrupts coming

from the coprocessor. There could also be bugs in the exception handlers

of the operating system.

It seems to be confirmed by numerous postings on Internet that using an ULSI

math coprocessor with protected mode operating systems will result in system

lockup once tasks using the math coprocessor are run. This seems to be the

result of a bug in the FSAVE and FRSTOR instructions in protected mode. These

instructions are used to save and restore the math coprocessor state for the

purpose of switching coprocessor contents between two tasks. OS/2 and Linux

are two operating systems that have been explicitly mentioned as having

locked up if a ULSI math coprocessor is used, but run fine with other math

coprocessors. ULSI is supposedly aware of the problem. So far, no fixes seem

to have been introduced in newer ULSI math coprocessors to remedy the problem.

Therefore it seems unlikely that ULSI will eventually introduce these bug

fixes.

==========

References

==========

[1]  Schnurer, G.: Zahlenknacker im Vormarsch. c't 1992, Heft 4, Seiten 170-

     186

[2]  Curnow, H.J.; Wichmann, B.A.: A synthetic benchmark. Computer Journal,

     Vol. 19, No. 1, 1976, pp. 43-49

[3]  Wichmann, B.A.: Validation code for the Whetstone benchmark. NPL Report

     DITC 107/88, National Physics Laboratory, UK, March 1988

[4]  Curnow, H.J.: Wither Whetstone? The Synthetic Benchmark after 15 Years.

     In: Aad van der Steen (ed.): Evaluating Supercomputers. London: Chapman

     and Hall 1990

[5]  Dongarra, J.J.: The Linpack Benchmark: An Explanation. In: Aad van der

     Steen (ed.): Evaluating Supercomputers. London: Chapman and Hall 1990

[6]  Dongarra, J.J.: Performance of Various Computers Using Standard Linear

     Equations Software. Report CS-89-85, Computer Science Department,

     University of Tennessee, March 11, 1992

[7]  Huth, N.: Dichtung und Wahrheit oder Datenblatt und Test. Design &

     Elektronik 1990, Heft 13, Seiten 105-110

[8]  Ungerer, B.: Sockelfolger. c't 1990, Heft 4, Seiten 162-163

[9]  Coonen, J.T.: Contributions to a Proposed Standard for Binary Floating-

     Point Arithmetic Ph.D. thesis, University of California, Berkeley, 1984

[10] IEEE: IEEE Standard for Binary Floating-Point Arithmetic. SIGPLAN

     Notices, Vol. 22, No. 2, 1985, pp. 9-25

[11] IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-

     1985. New York, NY: Institute of Electrical and Electronics Engineers

     1985

[12] FasMath 83D87 Compatibility Report. Cyrix Corporation, Nov. 1989 Order

     No. B2004

[13] FasMath 83D87 Accuracy Report. Cyrix Corporation, July 1990 Order No.

     B2002

[14] FasMath 83D87 Benchmark Report. Cyrix Corporation, June 1990 Order No.

     B2004

[15] FasMath 83D87 User's Manual. Cyrix Corporation, June 1990 Order No.

     L2001-003

[16] Brent, R.P.: A FORTRAN multiple-precision arithmetic package. ACM

     Transactions on Mathematical Software, Vol. 4, No. 1, March 1978, pp.

     57-70

[17] 387DX User's Manual, Programmer's Reference. Intel Corporation, 1989

     Order No. 231917-002

[18] Volder, J.E.: The CORDIC Trigonometric Computing Technique. IRE

     Transactions on Electronic Computers, Vol. EC-8, No. 5, September 1959,

     pp. 330-334

[19] Walther, J.S.: A unified algorithm for elementary functions. AFIPS

     Conference Proceedings, Vol. 38, SJCC 1971, pp. 379-385

[20] Esser, R.; Kremer, F.; Schmidt, W.G.: Testrechnungen auf der IBM 3090E

     mit Vektoreinrichtung. Arbeitsbericht RRZK-8803, Regionales

     Rechenzentrum an der Universit"at zu K ln, Februar 1988

[21] McMahon, H.H.: The Livermore Fortran Kernels: A test of the numerical

     performance range. Technical Report UCRL-53745, Lawrence Livermore

     National Laboratory, USA, December 1986

[22] Nave, R.: Implementation of Transcendental Functions on a Numerics

     Processor. Microprocessing and Microprogramming, Vol. 11, No. 3-4,

     March-April 1983, pp. 221-225

[23] Yuen, A.K.: Intel's Floating-Point Processors. Electro/88 Conference

     Record, Boston, MA, USA, 10-12 May 1988, pp. 48/5-1 - 48/5-7

[24] Stiller, A.; Ungerer, B.: Ausgerechnet. c't 1990, Heft 1, Seiten 90-92

[25] Rosch, W.L.: Handfeste Hilfe oder Seifenblase? PC Professionell, Juni

     1991, Seiten 214-237

[26] Intel 80286 Hardware Reference Manual. Intel Corporation, 1987 Order

     No.210760-002

[27] AMD 80C287 80-bit CMOS Numeric Processor. Advanced Micro Devices, June

     1989 Order No. 11671B/0

[28] Intel RapidCAD(tm) Engineering CoProcessor Performance Brief. Intel

     Corporation, 1992

[29] i486(tm) Microprocessor Performance Report. Intel Corporation, April

     1990 Order No. 240734-001

[30] Intel486(tm) DX2 Microprocessor Performance Brief. Intel Corporation,

     March 1992 Order No. 241254-001

[31] Abacus 3167 Floating-Point Coprocessor Data Book. Weitek Corporation,

     July 1990 DOC No. 9030

[32] WTL 4167 Floating-Point Coprocessor Data Book. Weitek Corporation, July

     1989 DOC No. 8943

[33] Abacus Software Designer's Guide. Weitek Corporation, September 1989 DOC

     No. 8967

[34] Stiller, A.: Cache & Carry. c't 1992, Heft 6, Seiten 118-130

[35] Stiller, A.: Cache & Carry, Teil 2. c't 1992, Heft 7, Seiten 28-34

[36] Palmer, J.F.; Morse, S.P.: Die mathematischen Grundlagen der Numerik-

     Prozessoren 8087/80287. M nchen: tewi 1985

[37] 80C187 80-bit Math Coprocessor Data Sheet. Intel Corporation, September

     1989 Order No. 270640-003

[38] IIT-2C87 80-bit Numeric Co-Processor Data Sheet. IIT, May 1990

[39] Engineering note 4x4 matrix multiply transformation. IIT, 1989

[40] Tscheuschner, E.: 4 mal 4 auf einen Streich. c't 1990, Heft 3, Seiten

     266-276

[41] Goldberg, D.: Computer Arithmetic. In: Hennessy, J.L.; Patterson, D.A.:

     Computer Architecture A Quantitative Approach. San Mateo, CA: Morgan

     Kaufmann 1990

[42] 8087 Math Coprocessor Data Sheet. Intel Corporation, October 1989, Order

     No. 205835-007

[43] 8086/8088 User's Manual, Programmer's and Hardware Reference. Intel

     Corporation, 1989 Order No. 240487-001

[44] 80286 and 80287 Programmer's Reference Manual. Intel Corporation, 1987

     Order No. 210498-005

[45] 80287XL/XLT CHMOS III Math Coprocessor Data Sheet. Intel Corporation,

     May 1990 Order No. 290376-001

[46] Cyrix FasMath(tm) 82S87 Coprocessor Data Sheet. Cyrix Coporation, 1991

     Document 94018-00 Rev. 1.0

[47] IIT-3C87 80-bit Numeric Co-Processor Data Sheet. IIT, May 1990

[48] 486(tm)SX(tm) Microprocessor/ 487(tm)SX(tm) Math CoProcessor Data Sheet.

     Intel Corporation, April 1991. Order No. 240950-001

[49] Schnurer, G.: Die gro"se Verlade. c't 1991, Heft 7, Seiten 55-57

[50] Schnurer, G.: Eine 4 f"ur alle. c't 1991, Heft 6, Seite 25

[51] Intel486(tm)DX Microprocessor Data Book. Intel Corporation, June 1991

     Order No. 240440-004

[52] i486(tm) Microprocessor Hardware Reference Manual. Intel Corporation,

     1990 Order No. 240552-001

[53] i486(tm) Microprocessor Programmer's Reference Manual. Intel

     Corporation, 1990 Order No. 240486-001

[54] Ungerer, B.: Kalte H"ute. c't 1992, Heft 8, Seiten 140-144

[55] Ungerer, B.: Hei"se Sache. c't 1991, Heft 4, Seiten 104-108

[56] Rosch, W.L.: Handfeste Hilfe oder Seifenblase? PC Profesionell, Juni

     1991, Seiten 214-237

[57] Niederkr"uger, W.: Lebendige Vergangenheit. c't 1990, Heft 12, Seiten

     114-116

[58] ULSI Math*Co Advanced Math Coprocessor Technical Specification. ULSI

     System, 5/92, Rev. E

[59] 387(tm)DX Math CoProcessor Data Sheet. Intel Corporation, September

     1990. Order No. 240448-003

[60] 387(tm) Numerics Coprocessor Extension Data Sheet. Intel Corporation,

     February 1989. Order No. 231920-005

[61] Koren, I.; Zinaty, O.: Evaluating Elementary Functions in a Numerical

     Coprocessor Based on Rational Approximations. IEEE Transactions on

     Computers, Vol. C-39, No. 8, August 1990, pp. 1030-1037

[62] 387(tm) SX Math CoProcessor Data Sheet. Intel Corporation, November 1989

     Order No. 240225-005

[63] Frenkel, G.: Coprocessors Speed Numeric Operations. PC-Week, August 27,

     1990

[64] Schnurer, G.; Stiller, A.: Auto-Matt. c't 1991, Heft 10, Seiten 94-96

[65] Grehan, R.: FPU Face-Off. Byte, November 1990, pp. 194-200

[66] Tang, P.T.P.: Testing Computer Arithmetic by Elementary Number Theory.

     Preprint MCS-P84-0889, Mathematics and Computer Science Division,

     Argonne National Laboratory, August 1989

[67] Ferguson, W.E.: Selecting math coprocessors. IEEE Spectrum, July 1991,

     pp. 38-41

[68] Schnabel, J.: Viermal 387. Computer Pers"onlich 1991, Heft 22, Seiten

     153-156

[69] Hofmann, J.: Starke Rechenknechte. mc 1990, Heft 7, Seiten 64-67

[70] Woerrlein, H.; Hinnenberg, R.: Die Lust an der Power. Computer Live

     1991, Heft 10, Seiten 138-149

[71] email from Peter Forsberg (peterf@vnet.ibm.com), email from Alan Brown

     (abrown@Reston.ICL.COM)

[72] email from Eric Johnson (johnsone%camax01@uunet.UU.NET), email from

     Jerry Whelan (guru@stasi.bradley.edu), email from Arto Viitanen

     (av@cs.uta.fi), email from Richard Krehbiel (richk@grebyn.com)

[73] email from Fred Dunlap (cyrix!fred@texsun.Central.Sun.COM)

[74] correspondence with Bengt Ask (f89ba@efd.lth.se)

[75] email from Thomas Hoberg (tmh@prosun.first.gmd.de)

[76] Microsoft Macro Assembler Programmer's Guide Version 6.0, Microsoft

     Corporation, 1991. Document No. LN06556-0291

[77] FasMath EMC87 User's Manual, Rev. 2. Cyrix Corporation, February 1991

     Order No. 90018-00

[78] Persson, C.: Die 32-Bit-Parade c't 1992, Heft 9, Seiten 150-156

[79] email from Duncan Murdoch (dmurdoch@mast.QueensU.CA)

[80] Fasmath 83S87 User's Manual. Cyrix Corporation, January 1990

     Order No. L2005-002

========================

Manufacturer's addresses

========================

  Intel Corporation

  2200 Mission College Blvd.

  Santa Clara, CA 95054

  USA

  IIT Integrated Information Technology, Inc.

  2540 Mission College Blvd.

  Santa Clara, CA 95054

  USA

  ULSI Systems, Inc.

  58 Daggett Drive

  San Jose, CA 95134

  USA

  Chips & Technologies, Inc.

  3050 Zanker Road

  San Jose, CA 95134

  USA

  Weitek Corporation

  1060 East Arques Avenue

  Sunnyvale, CA 94086

  USA

  AMD Advanced Microdevices, Inc.

  901 Thompson Place

  P.O.B. 3453

  Sunnyvale, CA 94088-3453

  USA

  Cyrix Corporation

  P.O.B. 850118

  Richardson, TX 75085

  USA

===============================

Appendix A: Test program source

===============================

  {$N+,E+}

  PROGRAM PCtrl;

  VAR B,c: EXTENDED;

      Precision, L: WORD;

  PROCEDURE SetPrecisionControl (Precision: WORD);

  (* This procedure sets the internal precision of the NDP. Available *)

  (* precision values:  0  -  24 bits (SINGLE)                        *)

  (*                    1  -  n.a. (mapped to single)                 *)

  (*                    2  -  53 bits (DOUBLE)                        *)

  (*                    3  -  64 bits (EXTENDED)                      *)

  VAR CtrlWord: WORD;

  BEGIN {SetPrecisionCtrl}

     IF Precision = 1 THEN

        Precision := 0;

     Precision := Precision SHL 8; { make mask for PC field in ctrl word}

     ASM

        FSTCW    [CtrlWord]        { store NDP control word }

        MOV      AX, [CtrlWord]    { load control word into CPU }

        AND      AX, 0FCFFh        { mask out precision control field }

        OR       AX, [Precision]   { set desired precision in PC field }

        MOV      [CtrlWord], AX    { store new control word }

        FLDCW    [CtrlWord]        { set new precision control in NDP }

     END;

  END; {SetPrecisionCtrl}

  BEGIN {main}

     FOR Precision := 1 TO 3 DO BEGIN

        B := 1.2345678901234567890;

        SetPrecisionControl (Precision);

        FOR L := 1 TO 20 DO BEGIN

           B := Sqrt (B);

        END;

        FOR L := 1 TO 20 DO BEGIN

           B := B*B;

        END;

        SetPrecisionControl (3);   { full precision for printout }

        WriteLn (Precision, B:28);

     END;

  END.

  +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  {$N+,E+}

  PROGRAM RCtrl;

  VAR B,c: EXTENDED;

      RoundingMode, L: WORD;

  PROCEDURE SetRoundingMode (RCMode: WORD);

  (* This procedure selects one of four available rounding modes *)

  (* 0  -  Round to nearest (default)                            *)

  (* 1  -  Round down (towards negative infinity)                *)

  (* 2  -  Round up (towards positive infinity)                  *)

  (* 3  -  Chop (truncate, round towards zero)                   *)

  VAR CtrlWord: WORD;

  BEGIN

     RCMode := RCMode SHL 10;  { make mask for RC field in control word}

     ASM

        FSTCW    [CtrlWord]        { store NDP control word }

        MOV      AX, [CtrlWord]    { load control word into CPU }

        AND      AX, 0F3FFh        { mask out rounding control field }

        OR       AX, [RCMode]      { set desired precision in RC field }

        MOV      [CtrlWord], AX    { store new control word }

        FLDCW    [CtrlWord]        { set new rounding control in NDP }

     END;

  END;

  BEGIN

     FOR RoundingMode := 0 TO 3 DO BEGIN

        B := 1.2345678901234567890e100;

        SetRoundingMode (RoundingMode);

        FOR L := 1 TO 51 DO BEGIN

           B := Sqrt (B);

        END;

           FOR L := 1 TO 51 DO BEGIN

           B := -B*B;

        END;

        SetRoundingMode (0);        { round to nearest for printout }

        WriteLn (RoundingMode, B:28);

     END;

  END.

  +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  {$N+,E+}

  PROGRAM DenormTs;

  VAR E: EXTENDED;

      D: DOUBLE;

      S: SINGLE;

  BEGIN

     WriteLn ('Testing support and printing of denormals');

     WriteLn;

     Write ('Coprocessor is: ');

     CASE Test8087 OF

        0: WriteLn ('Emulator');

        1: WriteLn ('8087 or compatible');

        2: WriteLn ('80287 or compatible');

        3: WriteLn ('80387 or compatible');

     END;

     WriteLn;

     S := 1.18e-38;

     S := S * 3.90625e-3;

     IF S = 0 THEN

        WriteLn ('SINGLE denormals not supported')

     ELSE BEGIN

        WriteLn ('SINGLE denormals supported');

        WriteLn ('SINGLE denormal prints as:   ', S);

        WriteLn ('Denormal should be printed as 4.60943...E-0041');

     END;

     WriteLn;

     D := 2.24e-308;

     D := D * 3.90625e-3;

     IF D = 0 THEN

        WriteLn ('DOUBLE denormals not supported')

     ELSE BEGIN

        WriteLn ('DOUBLE denormals supported');

        WriteLn ('DOUBLE denormal prints as:   ', D);

        WriteLn ('Denormal should be printed as 8.75...E-0311');

     END;

     WriteLn;

     E := 3.37e-4932;

     E := E * 3.90625e-3;

     IF E = 0 THEN

        WriteLn ('EXTENDED denormals not supported')

     ELSE BEGIN

        WriteLn ('EXTENDED denormals supported');

        WriteLn ('EXTENDED denormal prints as: ', E);

        WriteLn ('Denormal should be printed as 1.3164...E-4934');

     END;

  END.

====================================

Appendix B: Benchmark program source

====================================

  ; FILE: APFELM4.ASM

  ; assemble with MASM /e APFELM4 or TASM /e APFELM4

  CODE        SEGMENT BYTE PUBLIC 'CODE'

              ASSUME  CS: CODE

              PAGE    ,120

              PUBLIC  APPLE87;

  APPLE87     PROC    NEAR

              PUSH    BP                  ; save caller's base pointer

              MOV     BP, SP              ; make new frame pointer

              PUSH    DS                  ; save caller's data segment

              PUSH    SI                  ; save register

              PUSH    DI                  ;  variables

              LDS     BX, [BP+04]         ; pointer to parameter record

              FINIT                       ; init 80x87          FSP->R0

              FILD   WORD  PTR [BX+02]    ; maxrad              FSP->R7

              FLD    QWORD PTR [BX+08]    ; qmax                FSP->R6

              FSUB   QWORD PTR [BX+16]    ; qmax-qmin           FSP->R6

              DEC    WORD  PTR [BX+04]    ; ymax-1

              FIDIV  WORD  PTR [BX+04]    ; (qmax-qmin)/(ymax-1)FSP->R6

              FSTP   QWORD PTR [BX+16]    ; save delta_q        FSP->R7

              FLD    QWORD PTR [BX+24]    ; pmax                FSP->R6

              FSUB   QWORD PTR [BX+32]    ; pmax-pmin           FSP->R6

              DEC    WORD  PTR [BX+06]    ; xmax-1

              FIDIV  WORD  PTR [BX+06]    ; delta_p             FSP->R6

              MOV    AX, [BX]             ; save maxiter,[BX] needed for

              MOV    [BX+2], AX           ;  80x87 status now

              XOR    BP, BP               ; y=0

              FLD    QWORD PTR [BX+08]    ; qmax                FSP->R5

              CMP    WORD  PTR [BX+40], 0 ; fast mode on 8087 desired ?

              JE     yloop                ; no, normal mode

              FSTCW  [BX]                 ; save NDP control word

              AND    WORD PTR [BX], 0FCFFh; set PCTRL = single-precision

              FLDCW  [BX]                 ; get back NDP control word

  yloop:      XOR    DI, DI               ; x=0

              FLD    QWORD PTR [BX+32]    ; pmin                FSP->R4

  xloop:      FLDZ                        ; j**2= 0             FSP->R3

              FLDZ                        ; 2ij = 0             FSP->R2

              FLDZ                        ; i**2= 0             FSP->R1

              MOV    CX, [BX+2]           ; maxiter

              MOV    DL, 41h              ; mask for C0 and C3 cond.bits

  iteration:  FSUB   ST, ST(2)            ; i**2-j**2           FSP->R1

              FADD   ST, ST(3)            ; i**2-j**2+p = i     FSP->R1

              FLD    ST(0)                ; duplicate i         FSP->R0

              FMUL   ST(1), ST            ; i**2                FSP->R0

              FADD   ST, ST(0)            ; 2i                  FSP->R0

              FXCH   ST(2)                ; 2*i*j               FSP->R0

              FADD   ST, ST(5)            ; 2*i*j+q = j         FSP->R0

              FMUL   ST(2), ST            ; 2*i*j               FSP->R0

              FMUL   ST, ST(0)            ; j**2                FSP->R0

              FST    ST(3)                ; save j**2           FSP->R0

              FADD   ST, ST(1)            ; i**2+j**2           FSP->R0

              FCOMP  ST(7)                ; i**2+j**2 > maxrad? FSP->R1

              FSTSW  [BX]                 ; save 80x87 cond.codeFSP->R1

              TEST   BYTE PTR [BX+1], DL  ; test carry and zero flags

              LOOPNZ iteration            ; until maxiter if not diverg.

              MOV    DX, CX               ; number of loops executed

              NEG    CX                   ; carry set if CX <> 0

              ADC    DX, 0                ; adjust DX if no. of loops<>0

              ; plot point here (DI = X, BP = y, DX has the color)

              FSTP   ST(0)                ; pop i**2            FSP->R2

              FSTP   ST(0)                ; pop 2ij             FSP->R3

              FSTP   ST(0)                ; pop j**2            FSP->R4

              FADD   ST,ST(2)             ; p=p+delta_p         FSP->R4

              INC    DI                   ; x:=x+1

              CMP    DI, [BX+6]           ; x > xmax ?

              JBE    xloop                ; no, continue on same line

              FSTP   ST(0)                ; pop p               FSP->R5

              FSUB   QWORD PTR [BX+16]    ; q=q-delta_q         FSP->R5

              INC    BP                   ; y:=y+1

              CMP    BP, [BX+4]           ; y > ymax ?

              JBE    yloop                ; no, picture not done yet

  groesser:   POP    DI                   ; restore

              POP    SI                   ;  register variables

              POP    DS                   ; restore caller's data segm.

              POP    BP                   ; save caller's base pointer

              RET    4                    ; pop parameters and return

  APPLE87     ENDP

  CODE        ENDS

              END

  ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  UNIT Time;

  INTERFACE

  FUNCTION Clock: LONGINT;          { same as VMS; time in milliseconds }

  IMPLEMENTATION

  FUNCTION Clock: LONGINT; ASSEMBLER;

  ASM

             PUSH    DS            { save caller's data segment }

             XOR     DX, DX        { initialize data segment to }

             MOV     DS, DX        {  access ticker counter }

             MOV     BX, 46Ch      { offset of ticker counter in segm.}

             MOV     DX, 43h       { timer chip control port }

             MOV     AL, 4         { freeze timer 0 }

             PUSHF                 { save caller's int flag setting }

             STI                   { allow update of ticker counter }

             LES     DI, DS:[BX]   { read BIOS ticker counter }

             OUT     DX, AL        { latch timer 0 }

             LDS     SI, DS:[BX]   { read BIOS ticker counter }

             IN      AL, 40h       { read latched timer 0 lo-byte }

             MOV     AH, AL        { save lo-byte }

             IN      AL, 40h       { read latched timer 0 hi-byte }

             POPF                  { restore caller's int flag }

             XCHG    AL, AH        { correct order of hi and lo }

             MOV     CX, ES        { ticker counter 1 in CX:DI:AX }

             CMP     DI, SI        { ticker counter updated ? }

             JE      @no_update    { no }

             OR      AX, AX        { update before timer freeze ? }

             JNS     @no_update    { no }

             MOV     DI, SI        { use second }

             MOV     CX, DS        {  ticker counter }

  @no_update:NOT     AX            { counter counts down }

             MOV     BX, 36EDh     { load multiplier }

             MUL     BX            { W1 * M }

             MOV     SI, DX        { save W1 * M (hi) }

             MOV     AX, BX        { get M }

             MUL     DI            { W2 * M }

             XCHG    BX, AX        { AX = M, BX = W2 * M (lo) }

             MOV     DI, DX        { DI = W2 * M (hi) }

             ADD     BX, SI        { accumulate }

             ADC     DI, 0         {  result }

             XOR     SI, SI        { load zero }

             MUL     CX            { W3 * M }

             ADD     AX, DI        { accumulate }

             ADC     DX, SI        {  result in DX:AX:BX }

             MOV     DH, DL        { move result }

             MOV     DL, AH        {  from DL:AX:BX }

             MOV     AH, AL        {   to }

             MOV     AL, BH        {    DX:AX:BH }

             MOV     DI, DX        { save result }

             MOV     CX, AX        {  in DI:CX }

             MOV     AX, 25110     { calculate correction }

             MUL     DX            {  factor }

             SUB     CX, DX        { subtract correction }

             SBB     DI, SI        {  factor }

             XCHG    AX, CX        { result back }

             MOV     DX, DI        {  to DX:AX }

             POP     DS            { restore caller's data segment }

  END;

  BEGIN

     Port [$43] := $34;           { need rate generator, not square wave}

     Port [$40] := 0;             { generator as prog. by some BIOSes }

     Port [$40] := 0;             { for timer 0 }

  END. { Time }

  ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  {$A+,B-,R-,I-,V-,N+,E+}

  PROGRAM PeakFlop;

  USES Time;

  TYPE ParamRec = RECORD

                     MaxIter, MaxRad, YMax, XMax: WORD;

                     Qmax, Qmin, Pmax, Pmin: DOUBLE;

                     FastMod: WORD;

                     PlotFkt: POINTER;

                     FLOPS:LONGINT;

                  END;

  VAR Param: ParamRec;

      Start: LONGINT;

  {$L APFELM4.OBJ}

  PROCEDURE Apple87 (VAR Param: ParamRec);     EXTERNAL;

  BEGIN

     WITH Param DO BEGIN

        MaxIter:= 50;

        MaxRad := 30;

        YMax   := 30;

        XMax   := 30;

        Pmin   :=-2.1;

        Pmax   := 1.1;

        Qmin   :=-1.2;

        Qmax   := 1.2;

        FastMod:= Word (FALSE);

        PlotFkt:= NIL;

        Flops  := 0;

     END;

     Start := Clock;

     Apple87 (Param);         { executes 104002 FLOP }

     Start := Clock - Start;  { elapsed time in milliseconds }

     WriteLn ('Peak-MFLOPS: ', 104.002 / Start);

  END.

  ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  ; FILE: M4X4.ASM

  ;

  ; assemble with TASM /e M4X4 or MASM /e M4X4

  CODE      SEGMENT BYTE PUBLIC 'CODE'

            ASSUME  CS:CODE

            PUBLIC  MUL_4x4

            PUBLIC  IIT_MUL_4x4

  FSBP0     EQU     DB  0DBh, 0E8h        ; declare special IIT

  FSBP1     EQU     DB  0DBh, 0EBh        ;  instructions

  FSBP2     EQU     DB  0DBh, 0EAh

  F4X4      EQU     DB  0DBh, 0F1h

  ;---------------------------------------------------------------------

  ;

  ; MUL_4x4 multiplicates a four-by-four matrix by an array of four

  ; dimensional vectors. This operation is needed for 3D transformations

  ; in graphics data processing. There are arrays for each component of

  ; a vector. Thus there is an ; array containing all the x components,

  ; another containing all the y components and so on. Each component is

  ; an 8 byte IEEE floating-point number. Two indices into the array of

  ; vectors are given. The first is the index of the vector that will be

  ; processed first, the second is the index of the vector processed

  ; last.

  ;

  ;---------------------------------------------------------------------

  MUL_4x4   PROC    NEAR

            AddrX   EQU DWORD PTR [BP+24] ; address of X component array

            AddrY   EQU DWORD PTR [BP+20] ; address of Y component array

            AddrZ   EQU DWORD PTR [BP+16] ; address of Z component array

            AddrW   EQU DWORD PTR [BP+12] ; address of W component array

            AddrT   EQU DWORD PTR [BP+8]  ; addr. of 4x4 transform. mat.

            F       EQU WORD  PTR [BP+6]  ; first vector to process

            K       EQU WORD  PTR [BP+4]  ; last vector to process

            RetAddr EQU WORD  PTR [BP+2]  ; return address saved by call

            SavdBP  EQU WORD  PTR [BP+0]  ; saved frame pointer

            SavdDS  EQU WORD  PTR [BP-2]  ; caller's data segment

            PUSH    BP                    ; save TURBO-Pascal frame ptr

            MOV     BP, SP                ; new frame pointer

            PUSH    DS                    ; save TURBO-Pascal data segmnt

            MOV     CX, K                 ; final index

            SUB     CX, F                 ; final index - start index

            JNC     $ok                   ; must not

            JMP     $nothing              ;  be negative

  $ok:      INC     CX                    ; number of elements

            MOV     SI, F                 ; init offset into arrays

            SHL     SI, 1                 ; each

            SHL     SI, 1                 ;  element

            SHL     SI, 1                 ;   has 8 bytes

            LDS     DI, AddrT             ; addr. of transformation mat.

            FLD     QWORD PTR [DI]        ; load a[0,0]   = R7

            FLD     QWORD PTR [DI+8]      ; load a[0,1]   = R6

  $mat_mul: LES     BX, AddrX             ; addr. of x component array

            FLD     QWORD PTR ES:[BX+SI]  ; load x[a]     = R5

            LES     BX, AddrY             ; addr. of y component array

            FLD     QWORD PTR ES:[BX+SI]  ; load y[a]     = R4

            LES     BX, AddrZ             ; addr. of z component array

            FLD     QWORD PTR ES:[BX+SI]  ; load z[a]     = R3

            LES     BX, AddrW             ; addr. of w component array

            FLD     QWORD PTR ES:[BX+SI]  ; load w[a]     = R2

            FLD     ST(5)                 ; load a[0,0]   = R1

            FMUL    ST, ST(4)             ; a[0,0] * x[a] = R1

            FLD     ST(5)                 ; load a[0,1]   = R0

            FMUL    ST, ST(4)             ; a[0,1] * y[a] = R0

            FADDP   ST(1), ST             ; a[0,0]*x[a]+a[0,1]*y[a]=R1

            FLD     QWORD PTR [DI+16]     ; load a[0,2]   = R0

            FMUL    ST, ST(3)             ; a[0,2] * z[a] = R0

            FADDP   ST(1), ST             ; a[0,0]*x[a]...a[0,2]*z[a]=R1

            FLD     QWORD PTR [DI+24]     ; load a[0,3]   = R0

            FMUL    ST, ST(2)             ; a[0,3] * w[a] = R0

            FADDP   ST(1), ST             ; a[0,0]*x[a]...a[0,3]*w[a]=R1

            LES     BX, AddrX             ; get address of x vector

            FSTP    QWORD PTR ES:[BX+SI]  ; write new x[a]

            FLD     QWORD PTR [DI+32]     ; load a[1,0]   = R1

            FMUL    ST, ST(4)             ; a[1,0] * x[a] = R1

            FLD     QWORD PTR [DI+40]     ; load a[1,1]   = R0

            FMUL    ST, ST(4)             ; a[1,1] * y[a] = R0

            FADDP   ST(1), ST             ; a[1,0]*x[a]+a[1,1]*y[a]=R1

            FLD     QWORD PTR [DI+48]     ; load a[1,2]   = R0

            FMUL    ST, ST(3)             ; a[1,2] * z[a] = R0

            FADDP   ST(1), ST             ; a[1,0]*x[a]...a[1,2]*z[a]=R1

            FLD     QWORD PTR [DI+56]     ; load a[1,3]   = R0

            FMUL    ST, ST(2)             ; a[1,3] * w[a] = R0

            FADDP   ST(1), ST             ; a[1,0]*x[a]...a[1,3]*w[a]=R1

            LES     BX, AddrY             ; get address of y vector

            FSTP    QWORD PTR ES:[BX+SI]  ; write new y[a]

            FLD     QWORD PTR [DI+64]     ; load a[2,0]   = R1

            FMUL    ST, ST(4)             ; a[2,0] * x[a] = R1

            FLD     QWORD PTR [DI+72]     ; load a[2,1]   = R0

            FMUL    ST, ST(4)             ; a[2,1] * y[a] = R0

            FADDP   ST(1), ST             ; a[2,0]*x[a]+a[2,1]*y[a]=R1

            FLD     QWORD PTR [DI+80]     ; load a[2,2]   = R0

            FMUL    ST, ST(3)             ; a[2,2] * z[a] = R0

            FADDP   ST(1), ST             ; a[2,0]*x[a]...a[2,2]*z[a]=R1

            FLD     QWORD PTR [DI+88]     ; load a[2,3]   = R0

            FMUL    ST, ST(2)             ; a[2,3] * w[a] = R0

            FADDP   ST(1), ST             ; a[2,0]*x[a]...a[2,3]*w[a]=R1

            LES     BX, AddrZ             ; get address of z vector

            FSTP    QWORD PTR ES:[BX+SI]  ; write new z[a]

            FLD     QWORD PTR [DI+96]     ; load a[3,0]   = R1

            FMULP   ST(4), ST             ; a[3,0] * x[a] = R5

            FLD     QWORD PTR [DI+104]    ; load a[3,1]   = R1

            FMULP   ST(3), ST             ; a[3,1] * y[a] = R4

            FLD     QWORD PTR [DI+112]    ; load a[3,2]   = R1

            FMULP   ST(2), ST             ; a[3,2] * z[a] = R3

            FLD     QWORD PTR [DI+120]    ; load a[3,3]   = R1

            FMULP   ST(1), ST             ; a[3,3] * w[a] = R2

            FADDP   ST(1), ST             ; a[3,3]*w[a]+a[3,2]*z[a]=R3

            FADDP   ST(1), ST             ; a[3,3]*w[a]...a[3,1]*y[a]=R4

            FADDP   ST(1), ST             ; a[3,3]*w[a]...a[3,0]*x[a]=R5

            LES     BX, AddrW             ; get address of w vector

            FSTP    QWORD PTR ES:[BX+SI]  ; write new w[a]

            ADD     SI, 8                 ; new offset into arrays

            DEC     CX                    ; decrement element counter

            JZ      $done                 ; no elements left, done

            JMP     $mat_mul              ; transform next vector

  $done:    FSTP     ST(0)                ; clear

            FSTP     ST(0)                ;  FPU stack

  $nothing: POP      DS                   ; restore TP data segment

            POP      BP                   ; restore TP frame pointer

            RET      24                   ; pop parameters and return

  MUL_4X4   ENDP

  ;---------------------------------------------------------------------

  ;

  ; IIT_MUL_4x4 multiplicates a four-by-four matrix by an array of four

  ; dimensional vectors. This operation is needed for 3D transformations

  ; in graphics data processing. There are arrays for each component of

  ; a vector.  Thus there is an array containing all the x components,

  ; another containing all the y components and so on. Each component is

  ; an 8 byte IEEE floating-point number. Two indices into the array of

  ; vectors are given. The first is the index of the vector that will be

  ; processed first, the second is the index of the vector processed

  ; last. This subroutine uses the special instructions only available

  ; on IIT coprocessors to provide fast matrix multiply capabilities.

  ; So make sure to use it only on IIT coprocessors.

  ;

  ;---------------------------------------------------------------------

  IIT_MUL_4x4   PROC    NEAR

            AddrX   EQU DWORD PTR [BP+24] ; address of X component array

            AddrY   EQU DWORD PTR [BP+20] ; address of Y component array

            AddrZ   EQU DWORD PTR [BP+16] ; address of Z component array

            AddrW   EQU DWORD PTR [BP+12] ; address of W component array

            AddrT   EQU DWORD PTR [BP+8]  ; addr. of 4x4 transf. matrix

            F       EQU WORD  PTR [BP+6]  ; first vector to process

            K       EQU WORD  PTR [BP+4]  ; last vector to process

            RetAddr EQU WORD  PTR [BP+2]  ; return address saved by call

            SavdBP  EQU WORD  PTR [BP+0]  ; saved frame pointer

            SavdDS  EQU WORD  PTR [BP-2]  ; caller's data segment

            Ctrl87  EQU WORD  PTR [BP-4]  ; caller's 80x87 control word

            PUSH    BP                    ; save TURBO-Pascal frame ptr

            MOV     BP, SP                ; new frame pointer

            PUSH    DS                    ; save TURBO-Pascal data seg.

            SUB     SP, 2                 ; make local variabe

            FSTCW   [Ctrl87]              ; save 80x87 ctrl word

            LES     SI, AddrT             ; ptr to transformation matrix

            FINIT                         ; initialize coprocessor

            FSBP2                         ; set register bank 2

            FLD     QWORD PTR ES:[SI]     ; load a[0,0]

            FLD     QWORD PTR ES:[SI+32]  ; load a[1,0]

            FLD     QWORD PTR ES:[SI+64]  ; load a[2,0]

            FLD     QWORD PTR ES:[SI+96]  ; load a[3,0]

            FLD     QWORD PTR ES:[SI+8]   ; load a[0,1]

            FLD     QWORD PTR ES:[SI+40]  ; load a[1,1]

            FLD     QWORD PTR ES:[SI+72]  ; load a[2,1]

            FLD     QWORD PTR ES:[SI+104] ; load a[3,1]

            FINIT                         ; initialize coprocessor

            FSBP1                         ; set register bank 1

            FLD     QWORD PTR ES:[SI+16]  ; load a[0,2]

            FLD     QWORD PTR ES:[SI+48]  ; load a[1,2]

            FLD     QWORD PTR ES:[SI+80]  ; load a[2,2]

            FLD     QWORD PTR ES:[SI+112] ; load a[3,2]

            FLD     QWORD PTR ES:[SI+24]  ; load a[0,3]

            FLD     QWORD PTR ES:[SI+56]  ; load a[1,3]

            FLD     QWORD PTR ES:[SI+88]  ; load a[2,3]

            FLD     QWORD PTR ES:[SI+120] ; load a[3,3]

                                          ; transformation matrix loaded

            MOV     AX, F                 ; index of first vector

            MOV     DX, K                 ; index of last vector

            MOV     BX, AX                ; index 1st vector to process

            MOV     CL, 3                 ; component has 8 (2**3) bytes

            SHL     BX, CL                ; compute offset into arrays

            FINIT                         ; initialize coprocessor

            FSBP0                         ; set register bank 0

  $mat_loop:LES     SI, AddrW             ; addr. of W component array

            FLD     QWORD PTR ES:[SI+BX]  ; W component current vector

            LES     SI, AddrZ             ; addr. of Z component array

            FLD     QWORD PTR ES:[SI+BX]  ; Z component current vector

            LES     SI, AddrY             ; addr. of Y component array

            FLD     QWORD PTR ES:[SI+BX]  ; Y component current vector

            LES     SI, AddrX             ; addr. of X component array

            FLD     QWORD PTR ES:[SI+BX]  ; X component current vector

            F4X4                          ; mul 4x4 matrix by 4x1 vector

            INC     AX                    ; next vector

            MOV     DI, AX                ; next vector

            SHL     DI, CL                ; offset of vector into arrays

            FSTP    QWORD PTR ES:[SI+BX]  ; store X comp. of curr. vect.

            LES     SI, AddrY             ; address of Y component array

            FSTP    QWORD PTR ES:[SI+BX]  ; store Y comp. of curr. vect.

            LES     SI, AddrZ             ; address of Z component array

            FSTP    QWORD PTR ES:[SI+BX]  ; store Z comp. of curr. vect.

            LES     SI, AddrW             ; address of W component array

            FSTP    QWORD PTR ES:[SI+BX]  ; store W comp. of curr. vect.

            MOV     BX, DI                ; ofs nxt vect. in comp. arrays

            CMP     AX, DX                ; nxt vector past upper bound?

            JLE     $mat_loop             ; no, transform next vector

            FLDCW   [Ctrl87]              ; restore orig 80x87 ctrl word

            ADD      SP, 2                ; get rid of local variable

            POP      DS                   ; restore TP data segment

            POP      BP                   ; restore TP frame pointer

            RET      24                   ; pop parameters and return

  IIT_MUL_4x4   ENDP

  CODE      ENDS

            END

  ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  {$N+,E+}

  PROGRAM Trnsform;

  USES Time;

  CONST VectorLen = 8190;

  TYPE  Vector    = ARRAY [0..VectorLen] OF DOUBLE;

        VectorPtr = ^Vector;

        Mat4      = ARRAY [1..4, 1..4] OF DOUBLE;

  VAR   X: VectorPtr;

        Y: VectorPtr;

        Z: VectorPtr;

        W: VectorPtr;

        T: Mat4;

        K: INTEGER;

        L: INTEGER;

        First: INTEGER;

        Last:  INTEGER;

        Start: LONGINT;

        Elapsed:LONGINT;

  PROCEDURE MUL_4X4     (X, Y, Z, W: VectorPtr;

                         VAR T: Mat4; First, Last: INTEGER); EXTERNAL;

  PROCEDURE IIT_MUL_4X4 (X, Y, Z, W: VectorPtr;

                         VAR T: Mat4; First, Last: INTEGER); EXTERNAL;

  {$L M4X4.OBJ}

  BEGIN

     WriteLn ('Test8087 = ', Test8087);

     New (X);

     New (Y);

     New (Z);

     New (W);

     FOR L := 1 TO VectorLen DO BEGIN

        X^ [L] := Random;

        Y^ [L] := Random;

        Z^ [L] := Random;

        W^ [L] := Random;

     END;

     X^ [0] := 1;

     Y^ [0] := 1;

     Z^ [0] := 1;

     W^ [0] := 1;

     FOR K := 1 TO 4 DO BEGIN

        FOR L := 1 TO 4 DO BEGIN

           T [K, L] := (K-1)*4 + L;

        END;

     END;

     First := 0;

     Last  := 8190;

     Start := Clock;

     MUL_4X4 (X, Y, Z, W, T, First, Last);

     { IIT_MUL_4X4 (X, Y, Z, W, T, First, Last); }

     Elapsed := Clock - Start;

     WriteLn ('Number of vectors: ', Last-First+1);

     WriteLn ('Time: ', Elapsed, ' ms');

     WriteLn ('Equivalent to ', (28.0*(Last-First+1)/1e6)/

              (Elapsed*1e-3):0:4, ' MFLOPS');

     WriteLn;

     WriteLn ('Last vector:');

     WriteLn;

     WriteLn (X^[Last]);

     WriteLn (Y^[Last]);

     WriteLn (Z^[Last]);

     WriteLn (W^[Last]);

  END